Biogas Production Potential of Poultry Discharge in a Batch Reactor at Mesophilic Temperature

Author(s):  
Ademola Oyejide Adebayo ◽  
Simeon Olatayo Jekayinfa ◽  
Paul Amaechi Ozor ◽  
Charles Mbohwa ◽  
Christiane Herrrmann
Author(s):  
S. O. Jekayinfa ◽  
A. O. Adebayo ◽  
O. O. Oniya ◽  
K. O. Olatunji

Aim: To study the effects of different sizes of groundnut shell on biogas and methane yields using batch reactor at mesophilic temperature. Place and Duration of Study: The laboratory experiment was carried out at the Laboratory of the Department of Agricultural Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria, between August and October, 2018. Methodology: Batch experiment was set up for a period of 35 days with substrate reduced to 2, 4 and 6 mm sizes. The digesters were subjected to anaerobic digestion at mesophilic condition and the gas produced were collected with graduated gas sampling bottles dipped in measuring cylinders already filled with red liquid. The total gas produced was analyzed using gas analyzer to give the percentage composition of the gas components and Enwuff equation was used to calculate the biogas and methane yields of organic dry matter and fresh mass of the samples. Results: The total gas volume of 482.5, 605.0 and 732.5 ml were recorded for the sizes 2, 4 and 6 mm respectively. The organic dry matter biogas yields were 357.1, 514.31 and 324.5 lNkg-1oDM for treatment 2, 4 and 6 mm respectively; while organic dry matter methane produced were 222.41, 298.41 and 211.31 CH4kg-1oDM for 2, 4 and 6 mm, respectively. The fresh mass biogas yields were 147.6, 180.7 and 177.3 lNkg-1FM and fresh mass methane yield were 919, 104.8 and 115.4 lNCH4 kg-1FM for 2, 4 and 6 mm, respectively. Conclusion: Considering the yields recorded, the experiment shows that size reduction had effect on biogas yields and it is an important factor to be considered in biogas production. Treatment with particle size 4 mm seems to be the ideal size when considered the yields in terms of organic dry matter and fresh mass basis.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 742
Author(s):  
Grzegorz Ślusarz ◽  
Barbara Gołębiewska ◽  
Marek Cierpiał-Wolan ◽  
Jarosław Gołębiewski ◽  
Dariusz Twaróg ◽  
...  

Energy obtained from renewable sources is an important element of the sustainable development strategy of the European Union and its member states. The aim of this research is, therefore, to assess the potential and use of renewable energy sources and their effectiveness from the regional perspective in Poland. The research covered the years 2012 and 2018. The diversification of production and potential of renewable energy sources was defined on the basis of biogas and biomass. Calculations made using the data envelopment analysis (DEA) method showed that, in 2012, only three voivodeships achieved the highest efficiency in terms of the use of biogas and biomass resources; in 2018, this number increased to four. Comparing the effective units in 2012 and 2018, it can be seen that their efficiency frontier moved upwards by 56% in terms of biogas and 21% in terms of to biomass. Despite a large relative increase in the production of heat from biogas by 99% compared to the production of heat from biomass by 38%, the efficiency frontier for biogas did not change considerably. It was found that the resources of solid biomass are used far more intensively than the resources of biogas. However, in the case of biogas, a significant increase in the utilization of the production potential was observed: from 3.3% in 2012 to 6.4% in 2018, whereas in the same years, the utilization of solid biomass production potential remained at the same level (15.3% in 2012, 15.4% in 2018). It was also observed that, at the level of voivodeships, the utilization of biogas and biomass production potential is negatively correlated with the size of this potential. The combined potential of solid biomass and biogas can cover the demand of each of the studied regions in Poland in terms of thermal energy. The coverage ranges from 104% to 1402%. The results show that when comparing biomass and biogas, the production of both electricity and heat was dominated by solid biomass. Its high share occurred especially in voivodeships characterized by a high share of forest area and a low potential for biogas production (Lubuskie Voivodeship, Zachodniopomorskie Voivodeship).


2012 ◽  
Vol 4 (4) ◽  
pp. 682-702 ◽  
Author(s):  
Daniel Pick ◽  
Martin Dieterich ◽  
Sebastian Heintschel

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Zahir Talha ◽  
Weimin Ding ◽  
Esmaeil Mehryar ◽  
Muhammad Hassan ◽  
Jinhua Bi

To enhance the codigestion of degradation and improve biomethane production potential, sugarcane bagasse and filter mud were pretreated by sodium hydroxide NaOH 1 N at 100°C for 15, 30, and 45 minutes, respectively. Biomethane generation from 1-liter batch reactor was studied at mesophilic temperature (37±1)°C, solid concentrations of 6%, and five levels of mixing proportion with and without pretreatment. The results demonstrate that codigestion of filter mud with bagasse produces more biomethane than fermentation of filter mud as single substrate; even codigested substrate composition presented a better balance of nutrients (C/N ratio of 24.70) when codigestion ratio between filter mud and bagasse was 25 : 75 in comparison to filter mud as single substrate (C/N ratio 9.68). All the pretreatments tested led to solubilization of the organic matter, with a maximum lignin reduction of 86.27% and cumulative yield of biomethane (195.8 mL·gVS-1, digestion of pretreated bagasse as single substrate) obtained after 45 minutes of cooking by NaOH 1 N at 100°C. Under this pretreatment condition, significant increase in cumulative methane yield was observed (126.2 mL·gVS-1) at codigestion ratio of 25 : 75 between filter mud and bagasse by increase of 81.20% from untreated composition.


Sign in / Sign up

Export Citation Format

Share Document