Adrenal lesions detection on low-contrast CT images using fully convolutional networks with multi-scale integration

Author(s):  
Lei Bi ◽  
Jinman Kim ◽  
Tingwei Su ◽  
Michael Fulham ◽  
Dagan Feng ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3818
Author(s):  
Ye Zhang ◽  
Yi Hou ◽  
Shilin Zhou ◽  
Kewei Ouyang

Recent advances in time series classification (TSC) have exploited deep neural networks (DNN) to improve the performance. One promising approach encodes time series as recurrence plot (RP) images for the sake of leveraging the state-of-the-art DNN to achieve accuracy. Such an approach has been shown to achieve impressive results, raising the interest of the community in it. However, it remains unsolved how to handle not only the variability in the distinctive region scale and the length of sequences but also the tendency confusion problem. In this paper, we tackle the problem using Multi-scale Signed Recurrence Plots (MS-RP), an improvement of RP, and propose a novel method based on MS-RP images and Fully Convolutional Networks (FCN) for TSC. This method first introduces phase space dimension and time delay embedding of RP to produce multi-scale RP images; then, with the use of asymmetrical structure, constructed RP images can represent very long sequences (>700 points). Next, MS-RP images are obtained by multiplying designed sign masks in order to remove the tendency confusion. Finally, FCN is trained with MS-RP images to perform classification. Experimental results on 45 benchmark datasets demonstrate that our method improves the state-of-the-art in terms of classification accuracy and visualization evaluation.


Author(s):  
Xiuying Wang ◽  
Changyang Li ◽  
S. Eberl ◽  
M. Fulham ◽  
Dagan Feng

Author(s):  
YI WANG ◽  
BIN FANG ◽  
JINGRUI PI ◽  
LEI WU ◽  
PATRICK S. P. WANG ◽  
...  

The processing of blood vessels is an indispensable part in complicated surgeries of livers and hearts as the development of medical image technologies, which requires an automatic segmentation system over CT images of organs. However, the vascular pattern of livers in CT images suffers from low contrast to background so that the existing segmentation technologies are not able to extract the blood vessels completely. In the paper, we propose a new algorithm to extract the blood vessels of livers based on the adaptive multi-scale segmentation. First, we prove that the background histogram of normal scale blood vessels obeys the Gaussian distribution in CT images, and obtain the vascular distribution function from the vascular signal segmented from the background with a local optimal threshold. Second, Hessian matrix is employed to enhance the thin blood vessels before the extraction, and a complete and clear segmentation system for blood vessels is constructed by combining the major and thin blood vessels via filtering. Experimental results show the effectiveness of the proposed method, which is able to extract more complete blood vessels for 3D system, and assist the clinical liver surgeries efficiently.


Sign in / Sign up

Export Citation Format

Share Document