A power-aware IP core generator for the one-dimensional discrete Fourier transform

Author(s):  
Chih-Da Chien ◽  
Chien-Chang Lin ◽  
Jiun-In Guo ◽  
Tien-Fu Chen
2002 ◽  
Vol 11 (04) ◽  
pp. 405-426 ◽  
Author(s):  
JIUN-IN GUO ◽  
CHIEN-CHANG LIN ◽  
CHIH-DA CHIEN

This paper presents a new low-power parameterized hardware design for the one-dimensional (1D) discrete Fourier transform (DFT) of variable lengths. By combining the cyclic convolution formulation, block-based distributed arithmetic (BDA), and Cooley–Tukey decomposition algorithm together, we have developed a parameterized hardware design for the DFT of variable lengths ranging from 256 to 4096 points and with different modes of performance. The proposed design can perform different lengths of DFT computation through the configuration of parameters, which not only provides the flexibility in computing different length DFT but also facilitates the performance-driven design considerations in terms of power consumption and processing speeds, that is, we can configure the proposed design in different modes of performance by setting different parameters. This feature is beneficial to developing a parameterized DFT soft Intellectual Property (IP) core or hard IP core for meeting the system requirements of different silicon-on-a-chip (SOC) applications as compared with the existing fixed length DFT designs.


The structures of various ordered, but non-periodic, systems have been investigated and exhibit features which can be directly described by means of a construction which the authors call the shift lattice , which is a simple generalization of the concept of the lattice. This paper is devoted to a description of the properties of the one-dimensional shift lattice and its Fourier transform. Its applications to the phases related to L–Ta 2 O 5 and some Bi 2 TeO 5 -related systems are outlined and its relation to the theory of modulated structures and their Fourier transforms is briefly discussed.


2003 ◽  
Vol 797 ◽  
Author(s):  
Subhasish Chakraborty ◽  
David G. Hasko ◽  
Robert. J. Mears

ABSTRACTA new method is presented, based on the discrete Fourier Transform, for the design of aperiodic lattices to be used in photonic bandgap engineering. Designing an aperiodic lattice by randomly choosing defects is unlikely to result in useful optical transmission characteristics. By contrast, this new method allows an aperiodic lattice to be designed directly from the desired optical characteristic. The use of this method is illustrated with a design for a structure to realise two transmission wavelengths in the stopband of a one-dimensional photonic lattice. This design has been fabricated in silicon-on-insulator and some optical characteristics are given.


Sign in / Sign up

Export Citation Format

Share Document