Fully Programmable Bias Current Generator with 24 Bit Resolution Per Bias

Author(s):  
T. Delbruck ◽  
P. Lichtsteiner
Author(s):  
Kosuke Isono ◽  
Tetsuya Hirose ◽  
Keishi Tsubaki ◽  
Nobutaka Kuroki ◽  
Masahiro Numa

2019 ◽  
Vol 66 (6) ◽  
pp. 2027-2036
Author(s):  
Guillermo Antunez-Calistro ◽  
Mariana Siniscalchi ◽  
Fernando Silveira ◽  
Conrado Rossi-Aicardi

1990 ◽  
Vol 29 (04) ◽  
pp. 282-288 ◽  
Author(s):  
A. van Oosterom

AbstractThis paper introduces some levels at which the computer has been incorporated in the research into the basis of electrocardiography. The emphasis lies on the modeling of the heart as an electrical current generator and of the properties of the body as a volume conductor, both playing a major role in the shaping of the electrocardiographic waveforms recorded at the body surface. It is claimed that the Forward-Problem of electrocardiography is no longer a problem. Several source models of cardiac electrical activity are considered, one of which can be directly interpreted in terms of the underlying electrophysiology (the depolarization sequence of the ventricles). The importance of using tailored rather than textbook geometry in inverse procedures is stressed.


2004 ◽  
Vol 28 (3) ◽  
pp. 275-278
Author(s):  
K. Taguchi ◽  
S. Takahashi ◽  
K. Yamakawa ◽  
K. Ouchi

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4264
Author(s):  
Michal Gierczynski ◽  
Lech M. Grzesiak ◽  
Arkadiusz Kaszewski

This paper deals with a well-known problem of the transient DC-bias current occurring during a phase shift transition in dual active bridge (DAB) DC/DC converters. This phenomenon, if not compensated, can cause damage to the converter or deteriorate its performance. One aim of this paper is to present a solution which allows for the elimination of the undesired transient DC-bias component in current waveforms. This solution is the dual rising edge shift (DRES) compensation algorithm. It provides a very simple implementation and fast settling time within the first half of a switching period. Moreover, the solution is independent on any measurements or system parameter values. It is based on the double-sided single phase shift (DSSPS) modulation, which is described in detail along with a converter model in steady-state. Then, the mechanisms leading to the transient DC-bias are explained, and the compensation algorithm is derived. The performance of the algorithm has been tested using a laboratory prototype. A comprehensive set of tests, involving rapid step changes in power flow and frequency sweep, are provided. Finally, the features of the proposed algorithm are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document