Human emotion recognition using a deformable 3D facial expression model

Author(s):  
Yun Tie ◽  
Ling Guan
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiaodong Liu ◽  
Miao Wang

Recognition of human emotion from facial expression is affected by distortions of pictorial quality and facial pose, which is often ignored by traditional video emotion recognition methods. On the other hand, context information can also provide different degrees of extra clues, which can further improve the recognition accuracy. In this paper, we first build a video dataset with seven categories of human emotion, named human emotion in the video (HEIV). With the HEIV dataset, we trained a context-aware attention network (CAAN) to recognize human emotion. The network consists of two subnetworks to process both face and context information. Features from facial expression and context clues are fused to represent the emotion of video frames, which will be then passed through an attention network and generate emotion scores. Then, the emotion features of all frames will be aggregated according to their emotional score. Experimental results show that our proposed method is effective on HEIV dataset.


Author(s):  
Lei Huang ◽  
Fei Xie ◽  
Jing Zhao ◽  
Shibin Shen ◽  
Weiran Guang ◽  
...  

The human emotion recognition based on facial expression has a significant meaning in the application of intelligent man–machine interaction. However, the human face images vary largely in real environments due to the complex backgrounds and luminance. To solve this problem, this paper proposes a robust face detection method based on skin color enhancement model and a facial expression recognition algorithm with block principal component analysis (PCA). First, the luminance range of human face image is broadened and the contrast ratio of skin color is strengthened by the homomorphic filter. Second, the skin color enhancement model is established using YCbCr color space components to locate the face area. Third, the feature based on differential horizontal integral projection is extracted from the face. Finally, the block PCA with deep neural network is used to accomplish the facial expression recognition. The experimental results indicate that in the case of weaker illumination and more complicated backgrounds, both the face detection and facial expression recognition can be achieved effectively by the proposed algorithm, meanwhile the mean recognition rate obtained by the facial expression recognition method is improved by 2.7% comparing with the traditional Local Binary Patterns (LBPs) method.


Sign in / Sign up

Export Citation Format

Share Document