Neuromorphic implementation of attractor dynamics in decision circuit with NMDARs

Author(s):  
Hongzhi You ◽  
Dahui Wang
1990 ◽  
Vol 26 (2) ◽  
pp. 122 ◽  
Author(s):  
J. Akagi ◽  
Y. Kuriyama ◽  
K. Morizuka ◽  
M. Asaka ◽  
K. Tsuda ◽  
...  

1991 ◽  
Vol 27 (25) ◽  
pp. 2376 ◽  
Author(s):  
K. Runge ◽  
J.L. Gimlett ◽  
R.B. Nubling ◽  
K.C. Wang ◽  
M.F. Chang ◽  
...  
Keyword(s):  

1996 ◽  
Vol 32 (4) ◽  
pp. 393 ◽  
Author(s):  
M. Yoneyama ◽  
E. Sano ◽  
S. Yamahata ◽  
Y. Matsuoka ◽  
M. Yaita

2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Christian Baals ◽  
Alexandre Gil Moreno ◽  
Jian Jiang ◽  
Jens Benary ◽  
Herwig Ott

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Genís Prat-Ortega ◽  
Klaus Wimmer ◽  
Alex Roxin ◽  
Jaime de la Rocha

AbstractPerceptual decisions rely on accumulating sensory evidence. This computation has been studied using either drift diffusion models or neurobiological network models exhibiting winner-take-all attractor dynamics. Although both models can account for a large amount of data, it remains unclear whether their dynamics are qualitatively equivalent. Here we show that in the attractor model, but not in the drift diffusion model, an increase in the stimulus fluctuations or the stimulus duration promotes transitions between decision states. The increase in the number of transitions leads to a crossover between weighting mostly early evidence (primacy) to weighting late evidence (recency), a prediction we validate with psychophysical data. Between these two limiting cases, we found a novel flexible categorization regime, in which fluctuations can reverse initially-incorrect categorizations. This reversal asymmetry results in a non-monotonic psychometric curve, a distinctive feature of the attractor model. Our findings point to correcting decision reversals as an important feature of perceptual decision making.


Sign in / Sign up

Export Citation Format

Share Document