Fast and high quality super-resolution combined learning-based with TV regularization method

Author(s):  
Tomio Goto ◽  
Shotaro Suzuki ◽  
Satoshi Hirano ◽  
Masaru Sakurai
GigaScience ◽  
2020 ◽  
Vol 9 (4) ◽  
Author(s):  
Karl A Johnson ◽  
Guy M Hagen

Abstract Background Structured illumination microscopy (SIM) is a method that can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. Optimization of the imaging set-up and data-processing methods results in high-quality images without artifacts due to mosaicking or due to the use of SIM methods. Reconstruction methods based on Bayesian estimation can be used to produce images with a resolution beyond that dictated by the optical system. Findings Five complete datasets are presented including large panoramic SIM images of human tissues in pathophysiological conditions. Cancers of the prostate, skin, ovary, and breast, as well as tuberculosis of the lung, were imaged using SIM. The samples are available commercially and are standard histological preparations stained with hematoxylin-eosin. Conclusion The use of fluorescence microscopy is increasing in histopathology. There is a need for methods that reduce artifacts caused by the use of image-stitching methods or optical sectioning methods such as SIM. Stitched SIM images produce results that may be useful for intraoperative histology. Releasing high-quality, full-slide images and related data will aid researchers in furthering the field of fluorescent histopathology.


2019 ◽  
Vol 6 (1) ◽  
pp. 181074 ◽  
Author(s):  
Dongsheng Zhou ◽  
Ruyi Wang ◽  
Xin Yang ◽  
Qiang Zhang ◽  
Xiaopeng Wei

Depth image super-resolution (SR) is a technique that uses signal processing technology to enhance the resolution of a low-resolution (LR) depth image. Generally, external database or high-resolution (HR) images are needed to acquire prior information for SR reconstruction. To overcome the limitations, a depth image SR method without reference to any external images is proposed. In this paper, a high-quality edge map is first constructed using a sparse coding method, which uses a dictionary learned from the original images at different scales. Then, the high-quality edge map is used to guide the interpolation for depth images by a modified joint trilateral filter. During the interpolation, some information of gradient and structural similarity (SSIM) are added to preserve the detailed information and suppress the noise. The proposed method can not only preserve the sharpness of image edge, but also avoid the dependence on database. Experimental results show that the proposed method is superior to some state-of-the-art depth image SR methods.


Author(s):  
Lujun Lin ◽  
Yiming Fang ◽  
Xiaochen Du ◽  
Zhu Zhou

As the practical applications in other fields, high-resolution images are usually expected to provide a more accurate assessment for the air-coupled ultrasonic (ACU) characterization of wooden materials. This paper investigated the feasibility of applying single image super-resolution (SISR) methods to recover high-quality ACU images from the raw observations that were constructed directly by the on-the-shelf ACU scanners. Four state-of-the-art SISR methods were applied to the low-resolution ACU images of wood products. The reconstructed images were evaluated by visual assessment and objective image quality metrics, including peak signal-to-noise-ratio and structural similarity. Both qualitative and quantitative evaluations indicated that the substantial improvement of image quality can be yielded. The results of the experiments demonstrated the superior performance and high reproducibility of the method for generating high-quality ACU images. Sparse coding based super-resolution and super-resolution convolutional neural network (SRCNN) significantly outperformed other algorithms. SRCNN has the potential to act as an effective tool to generate higher resolution ACU images due to its flexibility.


2016 ◽  
Vol 10 (4) ◽  
pp. 304-313 ◽  
Author(s):  
Xiaotian Wang ◽  
Peiyu Zhang ◽  
Jinjian Wu ◽  
Fu Li ◽  
Yantao Wang ◽  
...  

2021 ◽  
Author(s):  
Rui Zeng ◽  
Jinglei Lv ◽  
He Wang ◽  
Luping Zhou ◽  
Michael Barnett ◽  
...  

ABSTRACTMapping the human connectome using fibre-tracking permits the study of brain connectivity and yields new insights into neuroscience. However, reliable connectome reconstruction using diffusion magnetic resonance imaging (dMRI) data acquired by widely available clinical protocols remains challenging, thus limiting the connectome/tractography clinical applications. Here we develop fibre orientation distribution (FOD) network (FOD-Net), a deep-learning-based framework for FOD angular super-resolution. Our method enhances the angular resolution of FOD images computed from common clinical-quality dMRI data, to obtain FODs with quality comparable to those produced from advanced research scanners. Super-resolved FOD images enable superior tractography and structural connectome reconstruction from clinical protocols. The method was trained and tested with high-quality data from the Human Connectome Project (HCP) and further validated with a local clinical 3.0T scanner. Using this method, we improve the angular resolution of FOD images acquired with typical single-shell low-angular-resolution dMRI data (e.g., 32 directions, b=1000 s/mm2) to approximate the quality of FODs derived from time-consuming, multi-shell high-angular-resolution dMRI research protocols. We also demonstrate tractography improvement, removing spurious connections and bridging missing connections. We further demonstrate that connectomes reconstructed by super-resolved FOD achieve comparable results to those obtained with more advanced dMRI acquisition protocols, on both HCP and clinical 3T data. Advances in deep-learning approaches used in FOD-Net facilitate the generation of high quality tractography/connectome analysis from existing clinical MRI environments.


Sign in / Sign up

Export Citation Format

Share Document