Hybrid Quantum Approximate Optimization Using Enhanced Ant Colony Optimization to Solve Large-Scale Combinatorial Optimization Problems

Author(s):  
Bishad Ghimire ◽  
Ausif Mahmood ◽  
Khaled Elleithy
Algorithms ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 286
Author(s):  
Ali Ahmid ◽  
Thien-My Dao ◽  
Ngan Van Le

Solving of combinatorial optimization problems is a common practice in real-life engineering applications. Trusses, cranes, and composite laminated structures are some good examples that fall under this category of optimization problems. Those examples have a common feature of discrete design domain that turn them into a set of NP-hard optimization problems. Determining the right optimization algorithm for such problems is a precious point that tends to impact the overall cost of the design process. Furthermore, reinforcing the performance of a prospective optimization algorithm reduces the design cost. In the current study, a comprehensive assessment criterion has been developed to assess the performance of meta-heuristic (MH) solutions in the domain of structural design. Thereafter, the proposed criterion was employed to compare five different variants of Ant Colony Optimization (ACO). It was done by using a well-known structural optimization problem of laminate Stacking Sequence Design (SSD). The initial results of the comparison study reveal that the Hyper-Cube Framework (HCF) ACO variant outperforms the others. Consequently, an investigation of further improvement led to introducing an enhanced version of HCFACO (or EHCFACO). Eventually, the performance assessment of the EHCFACO variant showed that the average practical reliability became more than twice that of the standard ACO, and the normalized price decreased more to hold at 28.92 instead of 51.17.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Kai-Cheng Hu ◽  
Chun-Wei Tsai ◽  
Ming-Chao Chiang ◽  
Chu-Sing Yang

Ant colony optimization (ACO) is an efficient heuristic algorithm for combinatorial optimization problems, such as clustering. Because the search strategy of ACO is similar to those of other well-known heuristics, the probability of searching particular regions will be increased if better results are found and kept. Although this kind of search strategy may find a better approximate solution, it also has a high probability of losing the potential search directions. To prevent the ACO from losing too many potential search directions at the early iterations, a novel pheromone updating strategy is presented in this paper. In addition to the “original” pheromone table used to keep track of thepromisinginformation, a second pheromone table is added to the proposed algorithm to keep track of theunpromisinginformation so as to increase the probability of searching directions worse than the current solutions. Several well-known clustering datasets are used to evaluate the performance of the proposed method in this paper. The experimental results show that the proposed method can provide better results than ACO and other clustering algorithms in terms of quality.


2013 ◽  
Vol 7 (1) ◽  
pp. 51-54 ◽  
Author(s):  
Guo Hong

Quadratic assignment problem (QAP) is one of fundamental combinatorial optimization problems in many fields. Many real world applications such as backboard wiring, typewriter keyboard design and scheduling can be formulated as QAPs. Ant colony algorithm is a multi-agent system inspired by behaviors of real ant colonies to solve optimization problems. Ant colony optimization (ACO) is one of new bionic optimization algorithms and it has some characteristics such as parallel, positive feedback and better performances. ACO has achieved in solving quadratic assignment problems. However, its solution quality and its computation performance need be improved for a large scale QAP. In this paper, a hybrid ant colony optimization (HACO) has been proposed based on ACO and particle swarm optimization (PSO) for a large scale QAP. PSO algorithm is combined with ACO algorithm to improve the quality of optimal solutions. Simulation experiments on QAP standard test data show that optimal solutions of HACO are better than those of ACO for QAP.


2013 ◽  
Vol 443 ◽  
pp. 541-545
Author(s):  
Qian Zou ◽  
Hua Jun Wang ◽  
Wei Huang ◽  
Jin Pan

Ant colony algorithm is an effective algorithm to solve combinatorial optimization problems, it has many good features, and there are also some disadvantages. In this paper, through research on ant colony optimization algorithm, apply it in intrusion detection. Then it gives an improved ant colony optimization algorithm. Tests show that the algorithm improves the efficiency of intrusion detection, reduces false positives of intrusion detection.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 361
Author(s):  
Teddy Nurcahyadi ◽  
Christian Blum

Ant colony optimization is a metaheuristic that is mainly used for solving hard combinatorial optimization problems. The distinctive feature of ant colony optimization is a learning mechanism that is based on learning from positive examples. This is also the case in other learning-based metaheuristics such as evolutionary algorithms and particle swarm optimization. Examples from nature, however, indicate that negative learning—in addition to positive learning—can beneficially be used for certain purposes. Several research papers have explored this topic over the last decades in the context of ant colony optimization, mostly with limited success. In this work we present and study an alternative mechanism making use of mathematical programming for the incorporation of negative learning in ant colony optimization. Moreover, we compare our proposal to some well-known existing negative learning approaches from the related literature. Our study considers two classical combinatorial optimization problems: the minimum dominating set problem and the multi dimensional knapsack problem. In both cases we are able to show that our approach significantly improves over standard ant colony optimization and over the competing negative learning mechanisms from the literature.


Sign in / Sign up

Export Citation Format

Share Document