Compact Dual Notched Band Monopole Antenna And Analysis in Frequency/Time Domain for UWB Wireless Applications

Author(s):  
Naresh Kumar ◽  
Pradeep Kumar ◽  
Manish Sharma
Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Manish Sharma ◽  
Y. K. Awasthi ◽  
Himanshu Singh ◽  
Raj Kumar ◽  
Sarita Kumari

AbstractIn this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm


Author(s):  
Asmaa Zugari ◽  
Wael Abd Ellatif Ali ◽  
Mohammad Ahmad Salamin ◽  
El Mokhtar Hamham

In this paper, a compact reconfigurable tri-band/quad-band monopole antenna is presented. To achieve the multi-band behavior, two right-angled triangles were etched in a conventional rectangular patch, and a partial ground plane is used. Moreover, the proposed multi-band antenna is printed on a low cost FR4 epoxy with compact dimensions of 0.23[Formula: see text], where [Formula: see text] is calculated at the lowest resonance frequency. To provide frequency agility, a metal strip which acts as PIN diode was embedded in the frame of the modified patch. The tri-band/quad-band antenna performance in terms of reflection coefficient, radiation patterns, peak gain and efficiency was studied. The measured results are consistent with the simulated results for both cases. The simple structure and the compact size of the proposed antenna could make it a good candidate for multi-band wireless applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xiaoyin Li ◽  
Lianshan Yan ◽  
Wei Pan ◽  
Bin Luo

A novel compact coplanar waveguide- (CPW-) fed ultrawideband (UWB) printed planar volcano-smoke antenna (PVSA) with four band-notches for various wireless applications is proposed and demonstrated. The low-profile antenna consists of a C-shaped parasitic strip to generate a notched band at 8.01~8.55 GHz for the ITU band, two C-shaped slots, and an inverted U-shaped slot etched in the radiator patch to create three notched bands at 5.15~5.35 GHz, 5.75~5.85 GHz, and 7.25~7.75 GHz for filtering the WLAN and X-band satellite signals. Simulated and measured results both confirm that the proposed antenna has a broad bandwidth of 3.1~12 GHz with VSWR < 2 and good omnidirectional radiation patterns with four notched-bands.


Sign in / Sign up

Export Citation Format

Share Document