Robotic Services in Cloud Computing Paradigm

Author(s):  
Rajesh Doriya ◽  
Pavan Chakraborty ◽  
G.C. Nandi
2021 ◽  
Vol 38 (2) ◽  
Author(s):  
Nicholas Torres Okita ◽  
Tiago A. Coimbra ◽  
José Ribeiro ◽  
Martin Tygel

ABSTRACT. The usage of graphics processing units is already known as an alternative to traditional multi-core CPU processing, offering faster performance in the order of dozens of times in parallel tasks. Another new computing paradigm is cloud computing usage as a replacement to traditional in-house clusters, enabling seemingly unlimited computation power, no maintenance costs, and cutting-edge technology, dynamically on user demand. Previously those two tools were used to accelerate the estimation of Common Reflection Surface (CRS) traveltime parameters, both in zero-offset and finite-offset domain, delivering very satisfactory results with large time savings from GPU devices alongside cost savings on the cloud. This work extends those results by using GPUs on the cloud to accelerate the Offset Continuation Trajectory (OCT) traveltime parameter estimation. The results have shown that the time and cost savings from GPU devices’ usage are even larger than those seen in the CRS results, being up to fifty times faster and sixty times cheaper. This analysis reaffirms that it is possible to save both time and money when using GPU devices on the cloud and concludes that the larger the data sets are and the more computationally intensive the traveltime operators are, we can see larger improvements.Keywords: cloud computing, GPU, seismic processing. Estendendo o uso de placas gráficas na nuvem para economias em regularização de dados sísmicosRESUMO. O uso de aceleradores gráficos para processamento já é uma alternativa conhecida ao uso de CPUs multi-cores, oferecendo um desempenho na ordem de dezenas de vezes mais rápido em tarefas paralelas. Outro novo paradigma de computação é o uso da nuvem computacional como substituta para os tradicionais clusters internos, possibilitando o uso de um poder computacional aparentemente infinito sem custo de manutenção e com tecnologia de ponta, dinamicamente sob demanda de usuário. Anteriormente essas duas ferramentas foram utilizadas para acelerar a estimação de parâmetros do tempo de trânsito de Common Reflection Surface (CRS), tanto em zero-offset quanto em offsets finitos, obtendo resultados satisfatórios com amplas economias tanto de tempo quanto de dinheiro na nuvem. Este trabalho estende os resultados obtidos anteriormente, desta vez utilizando GPUs na nuvem para acelerar a estimação de parâmetros do tempo de trânsito em Offset Continuation Trajectory (OCT). Os resultados obtidos mostraram que as economias de tempo e dinheiro foram ainda maiores do que aquelas obtidas no CRS, sendo até cinquenta vezes mais rápido e sessenta vezes mais barato. Esta análise reafirma que é possível economizar tanto tempo quanto dinheiro usando GPUs na nuvem, e conclui que quanto maior for o dado e quanto mais computacionalmente intenso for o operador, maiores serão os ganhos de desempenho observados e economias.Palavras-chave: computação em nuvem, GPU, processamento sísmico. 


Author(s):  
Abílio Cardoso ◽  
Fernando Moreira ◽  
Paulo Simões

Public and federal agencies from countries around the world are increasingly providing information technology based services via the Internet - known as e-government. Several of the general requirements of e-government services are satisfactorily met by the emerging Cloud Computing paradigm that promises a number of benefits such as service elasticity (the ability to handle peaks and troughs of demands); optimization of costs; capacity to handle large volumes of data; and a generalized model of Internet-based access for end-users. For this reason, it is no surprise that Cloud related technologies are gradually leveraging e-government platforms. In this chapter, a support framework is outlined that complies with and extends the well-known ITIL (Information Technology Infrastructure Library) set of best practices for IT (Information Technology) service management. It is suggested that the proposed framework can be usefully deployed to assist in the process of migrating e-government services provision to the Cloud Computing environment.


2013 ◽  
pp. 814-834
Author(s):  
Hassan Takabi ◽  
James B.D. Joshi

Cloud computing paradigm is still an evolving paradigm but has recently gained tremendous momentum due to its potential for significant cost reduction and increased operating efficiencies in computing. However, its unique aspects exacerbate security and privacy challenges that pose as the key roadblock to its fast adoption. Cloud computing has already become very popular, and practitioners need to provide security mechanisms to ensure its secure adoption. In this chapter, the authors discuss access control systems and policy management in cloud computing environments. The cloud computing environments may not allow use of a single access control system, single policy language, or single management tool for the various cloud services that it offers. Currently, users must use diverse access control solutions available for each cloud service provider to secure data. Access control policies may be composed in incompatible ways because of diverse policy languages that are maintained separately at every cloud provider. Heterogeneity and distribution of these policies pose problems in managing access policy rules for a cloud environment. In this chapter, the authors discuss challenges of policy management and introduce a cloud based policy management framework that is designed to give users a unified control point for managing access policies to control access to their resources no matter where they are stored.


Author(s):  
John R. Regola ◽  
John K. Mitchell III ◽  
Brandon R. Baez ◽  
Syed S. Rizvi

In the present scenario, the vulnerabilities associated with cloud computing and biometric technology rank among the most vital issues in information security. In this chapter, the primary goal is to investigate the physical and informational security susceptibilities of biometrics, analyze the structure and design possibilities of the cloud, and examine the new developments of biometrics with cloud computing. Foremost, the authors analyze the developments of biometrics and compare the performance based on defining characteristics. In addition, they examine threats and attacks that can compromise the assets of an organization or an individual's sensitive information. Furthermore, this chapter provides a comprehensive discussion on the physical vulnerabilities of biometrics. Moreover, one section of this chapter focuses on the informational and database vulnerabilities. In this chapter, the authors also discuss the design considerations and cloud computing paradigm in relation to biometric security systems.


Author(s):  
Thamer Al-Rousan

The cloud computing paradigm offers an innovative and promising vision concerning Information and Communications Technology. Actually, it provides the possibility of improving IT systems management and is changing the way in which hardware and software are designed and purchased. This paper introduces challenges in Global Software Development (GSD) and application of cloud computing platforms as a solution to some problems. Even though cloud computing provides compelling benefits and cost-effective options for GSD, new risks and difficulties must be taken into account. Thus, the paper presents a study about the risk issues involved in cloud computing. It highlights the different types of risks and how their existence can affect GSD. It also proposes a new risk management process model. The risk model employs new processes for risk analysis and assessment. Its aim is to analyse cloud risks quantitatively and, consequently, prioritise them according to their impact on different GSD objectives.


Web Services ◽  
2019 ◽  
pp. 1762-1789
Author(s):  
Harilaos Koumaras ◽  
Christos Damaskos ◽  
George Diakoumakos ◽  
Michail-Alexandros Kourtis ◽  
George Xilouris ◽  
...  

This chapter discusses the evolution of the cloud computing paradigm and its applicability in various sections of the computing and networking/telecommunications industry, such as the cloud networking, the cloud offloading, and the network function virtualization. The new heterogeneous virtualized ecosystem that is formulated creates new needs and challenges for management and administration at the network part. For this purpose, the approach of Software-Defined Networking is discussed and its future perspectives are further analyzed.


Sign in / Sign up

Export Citation Format

Share Document