Model of the explosive-emission center ignition on a cathode surface

Author(s):  
E.A. Litvinov ◽  
A.Z. Nemirovskii
2010 ◽  
Author(s):  
S. A. Barengolts ◽  
G. A. Mesyats ◽  
M. M. Tsventoukh

2012 ◽  
Vol 30 (4) ◽  
pp. 541-551 ◽  
Author(s):  
Limin Li ◽  
L. Chang ◽  
L. Zhang ◽  
J. Liu ◽  
G. Chen ◽  
...  

AbstractThis paper presents the development mechanism of surface plasmas of carbon-fiber-cathode electron beam source and its effects on the operation of a high-power microwave source, reflex triode vircator powered by about 400 kV, 9 kA, about 350 ns pulsed power accelerator. Based on the current and voltage characteristics of diodes using carbon fiber cathode, the axial expansion velocity is 1.2 cm/μs and the delay time of explosive emission is 2 ns. Further, the comparison of carbon fiber and stainless steel cathodes is made. It was found that the threshold electric field for carbon fiber cathode is about 25 kV/cm, and the delay time of explosive emission and threshold electric field for stainless steel cathode is, respectively, 4.5 ns and 40 kV/cm. The radial expansion velocity of individual emitting centers is estimated to be 1.2 cm/μs, equal to the axial expansion velocity, and this shows the cathode plasma spots spherically expand. In the optimal diode gap for microwave irradiation or at the average current density of 230 A/cm2using carbon fiber cathode, the screening radius was 0.67 cm, the lifetime of cathode emitting centers was about 60 ns, the cathode plasma density was 5 × 1015 cm−3, and the Debye radius of cathode plasma was <3 × 10−5 cm−3. The self-quenching behavior of explosive emission centers occurs, due to the process of cathode surface material release and cooling. The generation and self-quenching of emitting centers, and screening effect of cathode plasmas determine the increase and decrease of cathode emitting area, which is independent of the current density and background pressure. The relation between the lifetime of virtual cathode and background pressure was discussed. It was found, both theoretically and experimentally, that a lower background pressure indicates a longer microwave pulse or a better microwave waveform. It was observed by comparison that the temporary behavior of cathode emitting area is similar to the development process of microwave pulse. The changes of emitting area affects the stability of beam current injected into the virtual cathode region, further leading to the fluctuation of microwave pulse of vircator.


2008 ◽  
Vol 34 (7) ◽  
pp. 586-587 ◽  
Author(s):  
M. A. Polyakov ◽  
G. H. Furseĭ ◽  
L. A. Shirochin ◽  
A. A. Kontonistov

2020 ◽  
Vol 4 (141) ◽  
pp. 140-147
Author(s):  
MIKHAIL VIKHAREV ◽  
◽  
VLADIMIR YUDIN ◽  
VESELOVSKIY NIKOLAY ◽  
◽  
...  

The article shows the role of electroplating in the restoration of parts, indicates the advantages of restoring parts with electroplating over other methods, and gives the characteristics and properties of coatings obtained by electroplating. (Research purpose) The research purpose is in increasing the speed of application of zinc electroplating when restoring parts. (Materials and methods) The cathode current density has a decisive influence on the coating speed. The main reason for limiting the cathode current density during galvanizing from sulfuric acid electrolytes is the chemical polarization of the cathode. The article presents a study on the designed installation for the application of galvanic coatings. When applying coatings to the internal surfaces of parts, there was used a device with activating elements having an electromechanical rotation drive. This device prevents depletion of the near-cathode layer of the electrolyte and reduces the chemical polarization of the cathode. Elements made of moisture-resistant skin were used as activators. (Results and discussion) The article presents the results of experiments as a dependence of the coating speed on the speed of the activator relative to the restoring surface. It also presents the relationship between the size of the abrasive grains of the activating elements, the force of their pressing against the cathode surface, the speed of movement of the activator and the speed of applying the zinc coating, as well as its quality. By activating the cathode surface, it was possible to raise the operating current density to 100-150 amperes per square decimeter. The speed of application of zinc coatings is 16-25 micrometers per minute. (Conclusions) In the course of research, authors determined the conditions of electrolysis during galvanizing, which provide a significant increase in the cathode current density and the rate of application of these coatings during the restoration of parts.


Author(s):  
Evgeny V. Oreshkin ◽  
Vladimir I. Oreshkin ◽  
Sergey A. Barengolts ◽  
Gennady A. Mesyats ◽  
Konstantin V. Khischenko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document