properties of coatings
Recently Published Documents


TOTAL DOCUMENTS

519
(FIVE YEARS 172)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Author(s):  
A. Nazarko

Abstract. The effect of heat treatment modes on the structure and durometric properties of coatings obtained by surfacing with CSR-04СR27NI7MO3CU2Т cast rods, is considered. It is found that the temperature of 800°С and soaking time of 5 hours are optimal to increase the deposited metal hardness. It is shown that such a phenomenon results from the formation of the austenitic structure hardened by the precipitates of the σ-phase (FeCr), chromium carbides (Cr3C2) and titanium carbides (TiC). The heat treatment modes proposed can be applied in the wear-resistant surfacing technology of chemical equipment parts.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 84
Author(s):  
Alin Constantin Murariu ◽  
Lavinia Macarie ◽  
Luminita Crisan ◽  
Nicoleta Pleşu

The use of graphene (Gr) and its derivates graphene oxide (GO) showed that these materials are good candidates to enhance the properties of polyurethane (PU) coatings, especially the anticorrosion ones since graphene absorbs most of the light and provides hydrophobicity for repelling water. An important aspect of these multifunctional materials is that all these improvements can be realized even at very low filler loadings in the polymer matrix. In this work, an ultrasound cavitation technique was used for the proper dispersion of GO nanosheets (GON) in polyurethane (PU) resin to obtain a composite coating to protect the AlMg3 substrate. The addition of GON considerably improved the physical properties of coatings, as demonstrated by electrochemical impedance spectroscopy (EIS) analysis, promising improved anticorrosion performance after accelerated UV-ageing. Computational methods and Differential Scanning Calorimetry (DSC) measurements showed that GON facilitates the formation of additional bonds and stabilizes the PU structures during the ultraviolet (UV) exposure and aggressive attack of corrosive species. Limiting oxygen index (LOI) data reveal a slow burning behaviour of PU-GON coatings during UV exposure, which is better than PU alone.


Author(s):  
F. G. Lovshenko ◽  
A. S. Fedosenko ◽  
E. I. Marukovich

The established regularities of the formation of powders based on iron and nickel, obtained by the method of mechanical alloying and intended for the deposition of thermal spraying coatings, as well as the manufacture of products by layer‑by‑layer synthesis. The structure, phase composition and properties of materials are investigated. Powders consist of particles with a size of 20–70 microns, differ in the submicrocrystalline type structures, and nonequilibrium phase composition. Thermal spray coatings made of them have a set of properties that significantly exceed the properties of coatings made of commercially available materials. The diameter of the grains of the material obtained by the SLМ method from the synthesized powder is 1.5–2.0 times smaller than that produced from the powder of 316L steel, and the heat resistance is higher.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1566
Author(s):  
Bauyrzhan Rakhadilov ◽  
Dauir Kakimzhanov ◽  
Daryn Baizhan ◽  
Gulnar Muslimanova ◽  
Sapargali Pazylbek ◽  
...  

This study is aimed at obtaining a coating of aluminum oxide containing α-Al2O3 as the main phase by detonation spraying, as well as a comparative study of the structural, tribological and mechanical properties of coatings with the main phases of α-Al2O3 and γ-Al2O3. It was experimentally revealed for the first time that the use of propane as a combustible gas and the optimization of the technological regime of detonation spraying leads to the formation of an aluminum oxide coating containing α-Al2O3 as the main phase. Tribological tests have shown that the coating with the main phase of α-Al2O3 has a low value of wear volume and coefficient of friction in comparison with the coating with the main phase of γ-Al2O3. It was also determined that the microhardness of the coating with the main phase of α-Al2O3 is 25% higher than that of the coatings with the main phase of γ-Al2O3. Erosion resistance tests have shown (evaluated by weight loss) that the coating with α-Al2O3 phase is erosion-resistant compared to the coating with γ-Al2O3 (seen by erosion craters). However, the coating with the main phase of γ-Al2O3 has a high value of adhesion strength, which is 2 times higher than that of the coating with the main phase of α-Al2O3. As the destruction of coatings by the primary phase, α-Al2O3 began at low loads than the coating with the main phase γ-Al2O3. The results obtained provide the prerequisites for the creation of wear-resistant, hard and durable layered coatings, in which the lower layer has the main phase of γ-Al2O3, and the upper layer has the main phase of α-Al2O3.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1451
Author(s):  
Wen Zhong ◽  
Xiaobin Yang ◽  
Jikun Sun ◽  
Hongwei Gao ◽  
Yongping Bai ◽  
...  

Polymeric barrier materials are critical in contemporary industries for food, medicine, and chemical packaging. However, these materials, such as PET films, are impeded by the optimization of barrier properties by virtue of molecular design. Herein, a new methyl methacrylate-methyl acrylate-diallyl maleate-maleic acid (MMA-MAc-DAM-MA) was synthesized to tailor the surface properties of PET films for maximizing oxygen barrier properties. During the MMA-MAc-DAM-MA coating and curing process, the chemical structure evolutions of MMA-MAc-DAM-MA coatings were characterized, indicating that the cross-linking conversion and proportion of –COOH groups are critical for the oxygen barrier properties of coatings. The inherent –COOH groups are transformed into designed structures, including intramolecular anhydride, inter-chain anhydride and retained carboxylic acid. Therein, the inter-chain anhydride restraining the activity of coated polymer chain mainly contributes to enhanced barrier properties. The thermal properties of novel coatings were analyzed, revealing that the curing behavior is strongly dependent on the curing temperatures. The impacts of viscosity of the coating solution, coating velocity, and coating thickness on the oxygen permeability (Po2) of the coatings were investigated using a gas permeability tester to explore the optimum operating parameters during practical applications, which can reduce the Po2 of PET film by 47.8%. This work provides new insights on advanced coating materials for excellent barrier performance.


Metallurgist ◽  
2021 ◽  
Author(s):  
I. N. Kravchenko ◽  
S. V. Kartsev ◽  
S. A. Velichko ◽  
Yu. A. Kuznetsov ◽  
O. A. Sharaya ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1369
Author(s):  
Arsen E. Muslimov ◽  
Makhach Kh. Gadzhiev ◽  
Vladimir M. Kanevsky

The work presented is devoted to new approaches to increasing the superhydrophobic properties of coatings based on zinc oxide (ZnO) and titanium dioxide (TiO2). There is an innovation in the use of inorganic coatings with a non-polar structure, high melting point, and good adhesion to ZnO, in contrast to the traditionally used polymer coatings with low performance characteristics. The maximum superhydrophobicity of the ZnO surface (contact angle of 173°) is achieved after coating with a layer of hematite (Fe2O3). The reason for the abnormally high hydrophobicity is a combination of factors: minimization of the area of contact with water (Cassie state) and the specific microstructure of a coating with a layer of non-polar Fe2O3. It was shown that the coating of ZnO structures with bimodal roughness with a gold (Au) layer that is 60-nm thick leads to an increase in the wetting contact angle from 145° to 168°. For clean surfaces of Au and hematite Fe2O3 films, the contact angle wets at no more than 70°. In the case of titanium oxide coatings, what is new lies in the method of controlled synthesis of a coating with a given crystal structure and a level of doping with nitrogen using plasma technologies. It has been shown that the use of nitrogen plasma in an open atmosphere with different compositions (molecular, atomic) makes it possible to obtain both a hydrophilic (contact angle of 73°) and a highly hydrophobic surface (contact angle of 150°).


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3619
Author(s):  
Vitaliy Tyukanko ◽  
Alexandr Demyanenko ◽  
Antonina Dyuryagina ◽  
Kirill Ostrovnoy ◽  
Marianna Lezhneva

The aim of this work is to optimize the composition of a two-component silicone enamel consisting of an aluminum pigment and a polyphenylsiloxane polymer to obtain the maximum dispersion of the pigment in the coating. The following products were used as surfactants: AS-1, PEPA, and Telaz. To assess the effect of surfactants on the dispersion of the pigment, computer-optical microscopy was used. The results of the studies showed that all the studied surfactants cause an improvement in the dispersion of the pigment. According to the degree of influence on the dispersion of the pigment, surfactants can be arranged in a row: PEPA > Telaz > AS-1. When the PEPA content in the enamel is 0.25 g/dm3, a decrease in the diameter of the pigment particles by 46% (from 26 to 14 microns) is recorded, with an increase in their specific amount by 2 times (from 258 to 550 pcs). Optimal enamel compositions allow a reduction in the corrosion rate by 11 times (from 0.6 to 0.053 mm/year) and improvement to the decorative properties of coatings (roughness, gloss, etc.). The effectiveness of the AS-1 product (obtained from oil refining waste) as a dispersant additive in silicone enamel has been proven.


Sign in / Sign up

Export Citation Format

Share Document