emission cathode
Recently Published Documents


TOTAL DOCUMENTS

324
(FIVE YEARS 28)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Nathaniel R. Demmons ◽  
Arega Margousian ◽  
Jacob Knott ◽  
Mike Robin ◽  
Yu-Hui Chiu

2022 ◽  
Vol 92 (2) ◽  
pp. 232
Author(s):  
А.И. Пушкарев ◽  
С.С. Полисадов

The results of modeling and experimental investigation of the formation of anode and cathode plasmas in a vacuum diode with an explosive-emission cathode during the generation of a pulsed electron beam with a current density of 0.3-0.4 kA/cm^2 and an accelerating voltage of 300-500 kV are presented. It is shown that the concentration of the anode plasma does not exceed 10^10 cm^-3 and it does not significantly contribute to the operation of the diode. However, the complete desorption of molecules from the working surface of the explosive-emission cathode and the high efficiency of shock ionization of atoms ensure the formation of a cathode gas plasma with a concentration of 10^16 cm^-3. It is found that the charge of the explosive-emission plasma layer is significantly less than the charge of the electron beam and the main source of electrons is not an explosive-emission plasma, but a cathode gas plasma. In this case, the electron current is limited by the concentration of the cathode plasma. The use of a cathode with a developed surface (a cathode with a carbon fabric coating) allows increasing the total charge of the electron beam by more than 1.5 times without changing the cathode diameter and the anode-cathode gap.


Author(s):  
Oleksandr Mazmanishvili ◽  
Nikolay Reshetnyak ◽  
Ganna Sydorenko

The article presents the results of research and calculations on the formation of a radial electron beam by a magnetron gun with a secondary emission cathode in the electron energy range 35...65 keV and measuring its parameters during transportation in the total decreasing magnetic field of thesolenoid and the stray field of permanent magnets. The beam was transported in a system consisting of copper rings with an inner diameter of 66 mm,located at a distance of 85 mm from the exit of the magnetron gun. The dependence of the beam current on the amplitude and gradient of the fielddecay has been studied. The studies carried out have shown the possibility of stable formation of a radial electron beam with an energy of tens of keVin the decreasing magnetic field of the solenoid. By optimizing the distribution of the magnetic field (created by the solenoid and ring magnets) and itsdecay gradient, it is possible to achieve an increase in the incident of electrons on one ring (up to ~72% of the beam current). On the basis of themathematical model of the movement of the electron flow, a software tool has been synthesized that makes it possible to obtain and interpret thecharacteristics of the resulting flows. The obtained numerical dependences are in satisfactory agreement with the experimental results for a magneticfield with a large decay gradient. Various configurations of the magnetic field are considered. Solutions to the direct problem of modeling electrontrajectories for given initial conditions and parameters are obtained. Various configurations of the magnetic field are considered. It is shown that forthe selected initial conditions for the electron beam and the distributions of the longitudinal magnetic field along the axis of the gun and the transportchannel, the electron flux falls on a vertical section, the length of which is on the order of a millimeter. Thus, by changing the amplitude anddistribution of the magnetic field, it is possible to control the current in the radial direction along the length of the pipe, and, therefore, the place of theelectron irradiation.


Author(s):  
Mitchell E. Schneider ◽  
Benjamin Sims ◽  
Emily Jevarjian ◽  
Ryo Shinohara ◽  
Tanvi Nikhar ◽  
...  

2021 ◽  
Vol 91 (11) ◽  
pp. 1764
Author(s):  
В.И. Петров ◽  
П.П. Кизириди ◽  
Г.Е. Озур

Current characteristics of a plasma-filled, high-current electron gun with a new cathode assembly which can be named as a controlled explosive-emission cathode have been investigated. Multi-gap initiation of explosive emission is performed with the use of parallel operated, resistively decoupled arc plasma sources which electrodes and tube ceramic isolators are built-in to the explosive-emission cathode. The initiation of explosive emission was performed using 69 operating in parallel arc plasma sources whose electrodes and tubular ceramic insulators are inserted to the disk explosive-emission cathode. Experiments have demonstrated operability of high-current electron gun with a new cathode assembly at accelerating voltage up to 30 kV and its good emissivity (average in area current density) which was approximately 1.4–2.4 times higher than an emissivity of traditional electron gun with plasma anode and multi-wire copper cathode.


Sign in / Sign up

Export Citation Format

Share Document