A novel secure model: Image steganography with logistic map and secret key

Author(s):  
Mehtap Ulker ◽  
Bilgehan Arslan
2018 ◽  
Vol 14 (6) ◽  
pp. 753-763 ◽  
Author(s):  
Mohammed A. Fadhil Al-Husainy ◽  
Hamza Abbass A. Al-Sewadi

2019 ◽  
Vol 10 (4) ◽  
pp. 731 ◽  
Author(s):  
Mohammed Abbas Fadhil Al-Husainy ◽  
Diaa Mohammed Uliyan

Author(s):  
Anukul Pandey ◽  
Barjinder Singh Saini ◽  
Butta Singh ◽  
Neetu Sood

Signal processing technology comprehends fundamental theory and implementations for processing data. The processed data is stored in different formats. The mechanism of electrocardiogram (ECG) steganography hides the secret information in the spatial or transformed domain. Patient information is embedded into the ECG signal without sacrificing the significant ECG signal quality. The chapter contributes to ECG steganography by investigating the Bernoulli's chaotic map for 2D ECG image steganography. The methodology adopted is 1) convert ECG signal into the 2D cover image, 2) the cover image is loaded to steganography encoder, and 3) secret key is shared with the steganography decoder. The proposed ECG steganography technique stores 1.5KB data inside ECG signal of 60 seconds at 360 samples/s, with percentage root mean square difference of less than 1%. This advanced 2D ECG steganography finds applications in real-world use which includes telemedicine or telecardiology.


2012 ◽  
Vol 241-244 ◽  
pp. 2728-2731
Author(s):  
Yong Zhang

Some chaos-based image encryption schemes using plain-images independent secret code streams have weak encryption security and are vulnerable to chosen plaintext and chosen cipher-text attacks. This paper proposed a two-level secret key image encryption method, where the first-level secret key is the private symmetric secret key, and the second-level secret key is derived from both the first-level secret key and the plain image by iterating piecewise linear map and Logistic map. Even though the first-level key is identical, the different plain images will produce different second-level secret keys and different secret code streams. The results show that the proposed has high encryption speed, and also can effectively resist chosen/known plaintext attacks.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 351 ◽  
Author(s):  
Iqtadar Hussain ◽  
Amir Anees ◽  
Temadher Al-Maadeed ◽  
Muhammad Mustafa

The Advanced Encryption Standard (AES) is widely used in different kinds of security applications. The substitution box (S-box) is the main component of many modern symmetric encryption ciphers that provides confusion between the secret key and ciphertext. The S-box component that is used in AES is fixed. If we construct this component dynamically, the encryption strength of AES would be greater than before. In this manuscript, we used chaotic logistic map, Mobius transformation and symmetric group S 256 to construct S-box for AES. The idea behind the proposed work is to make supplementary safe S-box. The presented S-box is analyzed for the following analyses: linear approximation probability (LP), nonlinearity (NL), differential approximation probability (DP), strict avalanche criterion (SAC), and bit independence criterion (BIC). The analyses show that the proposed technique is useful in generating high resistance S-box to known attacks.


Author(s):  
Pahrul Irfan

Data security in the process of information exchange is very important. One way to secure the image is to use cryptographic techniques. Cryptographic algorithms applied to the image is used to randomize the position of pixels using a secret key parameters, so that images can not be recognized anymore after the encryption process. In this study, researchers used the algorithm of chaos known as algorithms compact, fast and commonly used in cryptography especially those in the image file. The results showed the image that has been through an encryption process can not be recognized because the randomization process image pixel position is performed using chaosalgorithm.


Sign in / Sign up

Export Citation Format

Share Document