ecg steganography
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

2020 ◽  
Vol 79 (33-34) ◽  
pp. 24449-24462
Author(s):  
Ching-Yu Yang ◽  
Lian-Ta Cheng ◽  
Wen-Fong Wang
Keyword(s):  

Author(s):  
Ching Yu Yang ◽  
Chi-Ming Lai ◽  
Hung-Chang Lin ◽  
Ting-Ying Lin ◽  
Ruei-Long Lu

Based on two-dimensional (2D) bit-embedding/-extraction approach, we propose a simple data hiding for electrocardiogram (ECG) signal. The patient’s sensitive (diagnostic) data can be efficiently hidden into 2D ECG host via the proposed decision rules. The performance of the proposed method using various sizes of the host bundles was demonstrated. Simulations have confirmed that the average SNR of the proposed method with a host bundle of size 3 ´ 3 is superior to that of existing techniques, while our payload is competitive to theirs. In addition, our method with a host bundle of size 2 ´  2 generated the best SNR values, while that with a host bundle of size 4 ´  4 provided the largest payload among the compared methods. Moreover, the proposed method provides robustness performance better than existing ECG steganography. Namely, our method provides high hiding capacity and robust against the attacks such as cropping, inversion, scaling, translation, truncation, and Gaussian noise-addition attacks. Since the proposed method is simple, it can be employed in real-time applications such as portable biometric devices.


Author(s):  
Anukul Pandey ◽  
Barjinder Singh Saini ◽  
Butta Singh ◽  
Neetu Sood

Signal processing technology comprehends fundamental theory and implementations for processing data. The processed data is stored in different formats. The mechanism of electrocardiogram (ECG) steganography hides the secret information in the spatial or transformed domain. Patient information is embedded into the ECG signal without sacrificing the significant ECG signal quality. The chapter contributes to ECG steganography by investigating the Bernoulli's chaotic map for 2D ECG image steganography. The methodology adopted is 1) convert ECG signal into the 2D cover image, 2) the cover image is loaded to steganography encoder, and 3) secret key is shared with the steganography decoder. The proposed ECG steganography technique stores 1.5KB data inside ECG signal of 60 seconds at 360 samples/s, with percentage root mean square difference of less than 1%. This advanced 2D ECG steganography finds applications in real-world use which includes telemedicine or telecardiology.


Sign in / Sign up

Export Citation Format

Share Document