Correlation between shielding effectiveness and transfer impedance of shielded cable

Author(s):  
M. Taghivand
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiaoshan Wu ◽  
Xiaohui Shi ◽  
Jin Jia ◽  
Heming Zhao ◽  
Xu Li

Due to the high-voltage and high-current operating characteristics of the electric drive system of electric vehicles, it forms strong electromagnetic interference during the working process. The shielding effectiveness of the high-voltage connection cable that connects the components of the electric drive system is directly related to its electromagnetic interference emissions. Therefore, the modeling and analysis of the shielding effectiveness of the connection cable is very important for the development of a connection cable with good shielding effectiveness. Firstly, the transfer impedance value representing the shielding effectiveness of the shielded cable is analyzed, and the difference between the single-layer shield and the double-layer shield cable is compared. The influence of double-layer shielded high-voltage connection cables commonly used in electric vehicles on the shielding layer DC resistance and keyhole inductance is clarified. Secondly, the transfer impedance optimization model ZT_D-Desmoulins is obtained by combining with the single-layer shielded cable Desmoulins model and considering the influence of shielded layer DC resistance and keyhole inductance. Finally, three double-layer shielded cables of different types were selected for the triaxial test. The error rates of the test data and the ZT_D-Desmoulin optimization model are all lower than 20% in each frequency band, which verified the correctness, universality, and great engineering application value of the optimization model.


1991 ◽  
Vol 24 (9) ◽  
pp. 282-285
Author(s):  
G M Kunkel

EMI gaskets are used extensively by the electrical/electronic engineering community to assist in inhibiting the flow of radiated electromagnetic fields into and out of electronic equipment. Shielding effectiveness tests are used extensively by the manufacturers of EMI gaskets to grade their products. The assumption made by the design engineering community is that the shielding effectiveness as presented in the data is what they will receive in their equipment. This assumption is not true due to the errors associated with the shielding effectiveness testing of the gaskets where errors of as much as 80 dB (10 000 times) can be represented. The paper describes briefly the problems associated with the shielding effectiveness test methods currently used and provides a detailed method of calculating the shielding effectiveness of an EMI gasketed joint using transfer impedance test data.


Sign in / Sign up

Export Citation Format

Share Document