Direct Decomposition about Direct Sum Decomposition of Space

Author(s):  
Chen Hui-ru ◽  
Liu Zhi-bing
1998 ◽  
Vol 21 (2) ◽  
pp. 433-440 ◽  
Author(s):  
Masahito DATEYAMA ◽  
Teturo KAMAE

2019 ◽  
Vol 27 (2) ◽  
pp. 117-131
Author(s):  
Kazuhisa Nakasho ◽  
Yasunari Shidama

Summary In this article, we formalize differentiability of implicit function theorem in the Mizar system [3], [1]. In the first half section, properties of Lipschitz continuous linear operators are discussed. Some norm properties of a direct sum decomposition of Lipschitz continuous linear operator are mentioned here. In the last half section, differentiability of implicit function in implicit function theorem is formalized. The existence and uniqueness of implicit function in [6] is cited. We referred to [10], [11], and [2] in the formalization.


2006 ◽  
Vol 80 (3) ◽  
pp. 359-366 ◽  
Author(s):  
Dinh Van Huynh ◽  
S. Tariq Rizvi

AbstractA module M is said to satisfy the condition (℘*) if M is a direct sum of a projective module and a quasi-continuous module. In an earlier paper, we described the structure of rings over which every (countably generated) right module satisfies (℘*), and it was shown that such a ring is right artinian. In this note some additional properties of these rings are obtained. Among other results, we show that a ring over which all right modules satisfy (℘*) is also left artinian, but the property (℘*) is not left-right symmetric.


1994 ◽  
Vol 17 (4) ◽  
pp. 661-666
Author(s):  
Mahmoud Ahmed Kamal

In this paper we show that a direct decomposition of modulesM⊕N, withNhomologically independent to the injective hull ofM, is a CS-module if and only ifNis injective relative toMand both ofMandNare CS-modules. As an application, we prove that a direct sum of a non-singular semisimple module and a quasi-continuous module with zero socle is quasi-continuous. This result is known for quasi-injective modules. But when we confine ourselves to CS-modules we need no conditions on their socles. Then we investigate direct sums of CS-modules which are pairwise relatively inective. We show that every finite direct sum of such modules is a CS-module. This result is known for quasi-continuous modules. For the case of infinite direct sums, one has to add an extra condition. Finally, we briefly discuss modules in which every two direct summands are relatively inective.


1975 ◽  
Vol 27 (3) ◽  
pp. 508-512
Author(s):  
G. B. Gustafson ◽  
S. Sedziwy

Consider the wth order scalar ordinary differential equationwith pr ∈ C([0, ∞) → R ) . The purpose of this paper is to establish the following:DECOMPOSITION THEOREM. The solution space X of (1.1) has a direct sum Decompositionwhere M1 and M2 are subspaces of X such that(1) each solution in M1\﹛0﹜ is nonzero for sufficiently large t ﹛nono sdilatory) ;(2) each solution in M2 has infinitely many zeros ﹛oscillatory).


1995 ◽  
Vol 138 ◽  
pp. 113-140 ◽  
Author(s):  
E. De Negri ◽  
G. Valla

Let k be an infinite field and A a standard G-algebra. This means that there exists a positive integer n such that A = R/I where R is the polynomial ring R := k[Xv …, Xn] and I is an homogeneous ideal of R. Thus the additive group of A has a direct sum decomposition A = ⊕ At where AiAj ⊆ Ai+j. Hence, for every t ≥ 0, At is a finite-dimensional vector space over k. The Hilbert Function of A is defined by


1998 ◽  
Vol 50 (3) ◽  
pp. 525-537 ◽  
Author(s):  
William Brockman ◽  
Mark Haiman

AbstractWe study the coordinate rings of scheme-theoretic intersections of nilpotent orbit closures with the diagonal matrices. Here μ′ gives the Jordan block structure of the nilpotent matrix. de Concini and Procesi [5] proved a conjecture of Kraft [12] that these rings are isomorphic to the cohomology rings of the varieties constructed by Springer [22, 23]. The famous q-Kostka polynomial is the Hilbert series for the multiplicity of the irreducible symmetric group representation indexed by λ in the ring . Lascoux and Schützenberger [15, 13] gave combinatorially a decomposition of as a sum of “atomic” polynomials with non-negative integer coefficients, and Lascoux proposed a corresponding decomposition in the cohomology model.Our work provides a geometric interpretation of the atomic decomposition. The Frobenius-splitting results of Mehta and van der Kallen [19] imply a direct-sum decomposition of the ideals of nilpotent orbit closures, arising from the inclusions of the corresponding sets. We carry out the restriction to the diagonal using a recent theorem of Broer [3]. This gives a direct-sum decomposition of the ideals yielding the , and a new proof of the atomic decomposition of the q-Kostka polynomials.


Sign in / Sign up

Export Citation Format

Share Document