Analysis of voltage source converters under DC line-to-line short-circuit fault conditions

Author(s):  
Mahmood Alwash ◽  
Mark Sweet ◽  
E. M. S. Narayanan
2021 ◽  
Vol 9 ◽  
Author(s):  
Jun Xu ◽  
Lei Gao ◽  
Huiyuan Zhang

Abstract-Fault current limiters (FCLs) can suppress the rise of short-circuit fault currents in voltage source converter (VSC) based DC grids. However, the power electronic switches of FCLs need extra source equipment to supply the required power, which increases complexity and cost. This paper presents three kinds of self-powered solid-state FCLs (SSFCLs). The proposed self-powered SSFCLs detect short-circuit faults by sensing fault current increases and draw energy from the fault DC line to automatically drive the power electronic switches. The self-powered SSFCLs are equipped with a self-powered supply system (SPSS). The SPSS obtains energy from the magnetic field induced by short-circuit fault current using magnetic-coupling mutual inductance coils. In PSCAD/EMTDC, the proposed self-powered SSFCLs are placed directly on the DC line without external power supply equipment. When a short-circuit fault occurs, the simulation results verify that the proposed self-powered SSFCLs can rapidly acquire power to drive the power electronic switches and then suppress the rise of the fault current. The proposed self-powered SSFCL prototypes provide a solution for decreasing the cost and complexity associated with installing extra source equipment.


2021 ◽  
Author(s):  
Shahram Negari

The global energy consumption is soaring at an unprecedented rate over the past three decades, in part due to rapid socioeconomic advancement in developing countries. This enormous demand, in turn, has pushed the energy production methods to their limits. Therefore, huge investments are predicted to be put in the energy sector to increase production at one end and enhance consumption efficiency at the other. Currently a considerable portion of electric energy is produced by power plants who consume some kind of fossil based energy carrier. However, dependency on fossil based energy carriers has brought up its own serious drawbacks including ecological problems such as global warming, increased CO2 emission, and alarming pollution levels. As a remedy, many economies have diverted from traditional means of energy production by embracing new sustainable energy production methods and simultaneously improving consumption habits. Currently, among technically available and economically viable solutions, generating energy from renewable sources, in particular wind and solar are pioneering. Finding the appropriate locations and building large scale wind farms or solar farms in urban areas, which are already suffering from congestion, has turned to be a major challenge. Consequently, many investors are now turning toward construction of off-shore farms. Transferring the electric energy from the off-shore farm to the mainland in a safe and reliable way is the next challenge. Having taken into account several technical and economic reasons, laying submarine HVDC cables at sea substrate to evacuate the power from offshore wind farms is the best available method at the present. Utilizing HVDC requires installation of AC/DC converters, which due to grid characteristics in particular in remote areas, will be mainly based on utilizing voltage source converters. Yet, as to integration of antiparallel diodes in their valves, voltage source converters are intrinsically vulnerable against massive short circuit currents and backflow of energy from transmission line to the converter. Thus developing a reliable circuit breaker topology, which is the frontline protection device for both submarine transmission line and converter seems to be essential. In this research, existing topologies and solutions for circuit breakers, including their features and drawbacks are discussed and then a new topology for HVDC circuit breaker is introduced. Many solid-state topologies have been proposed by academia and rolled out by manufacturers so far. A feature common to all existing designs is utilization of surge arrester for absorbing the energy stored in the system. However, the new topology that is put forward in this research is based on a combination of solid-state switch and a mutual inductance, which diverts the energy stored in the transmission line at the time of short circuit current to a resistor. The resistor then damps and absorbs the energy which is finally dissipated as heat. Both simple and complex Simulink models are developed to test the performance of the proposed topology. Results of both simulation scenarios corroborate and validate the functionality and reliability of the suggested design.


2021 ◽  
Vol 11 (13) ◽  
pp. 6204
Author(s):  
Shun Sang ◽  
Binhui Pei ◽  
Jiejie Huang ◽  
Lei Zhang ◽  
Xiaocen Xue

Voltage source (VS) control based on inertia synchronization is a novel phase lock loop (PLL)-less autonomous grid-synchronization control strategy suitable for the permanent magnet synchronous generator (PMSG)-based wind turbine. It can autonomously sense grid frequency fluctuations by adopting the dynamics of DC-link capacitor, and it has the advantage of stable operation in an extremely weak grid. This paper further studies the low-voltage ride-through (LVRT) of the PMSG-based wind turbine under the VS control, and presents a wind turbine structure with the additional energy storage battery on the DC side, which not only improves its LVRT capability but also enables the wind turbine to participate in the grid primary frequency regulation. The transient characteristics of VS-controlled wind turbines after the occurrence of the short-circuit fault are analyzed, and a current suppression strategy via switching the virtual resistor in the control loop of the grid-side converter (GCS) is presented. Through coordination with the energy storage battery, the LVRT of the PMSG-based wind turbine is realized, which has the advantage of withstanding a long-time short-circuit fault. Finally, based on the PSCAD/EMTDC simulation platform, the feasibility of the control strategy and the correctness of the theoretical analysis are verified.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3610
Author(s):  
Carlos Coelho Teixeira ◽  
Helder Leite

Voltage source converters (VSCs) are self-commutated converters able to generate AC voltages with or without the support of an AC connecting grid. VSCs allow fast control of active and reactive powers in an independent way. VSCs also have black start capability. Their use in high-voltage direct current (HVDC) systems, comparative to the more mature current source converter (CSC)-based HVDC, offers faster active power flow control. In addition, VSCs provide flexible reactive power control, independent at each converter terminal. It is also useful when connecting DC sources to weak AC grids. Steady-state RMS analysis techniques are commonly used for early-stage analysis, for design purposes and for relaying. Sources interfaced through DC/AC or AC/DC/AC converters, opposite to conventional generators, are not well represented by electromotive forces (E) behind impedance models. A methodology to include voltage source converters (VSCs) in conventional RMS short-circuit analysis techniques is advanced in this work. It represents an iterative procedure inside general calculation techniques and can even be used by those with only basic power electronics knowledge. Results are compared to those of the commercial software package PSS®CAPE to demonstrate the validity of the proposed rmsVSC algorithm.


Sign in / Sign up

Export Citation Format

Share Document