The first integrated optical driver chip for fiber optic gyroscopes

Author(s):  
Minh A. Tran ◽  
Jared C. Hulme ◽  
Tin Komljenovic ◽  
MJ Kennedy ◽  
Daniel J. Blumenthal ◽  
...  
2019 ◽  
pp. 90-95
Author(s):  
V. A. Minaev ◽  
I. D. Korolev ◽  
O. A. Kulish ◽  
A. V. Mazin

The existing methods of information delivery to the strategic and tactical management of many government agencies are expensive, not always reliable and efficient. Therefore, quantum cryptographic systems (QCS) have been actively developed in recent years. However, there are problems with the use of the QCS associated with the reliability of information transfer. First, the existing fiber-optic communication channels (FOCC) are not designed to transmit single-photon signals, which leads to the complexity of their cryptographic protection. The second is insufficiently methodically developed calculation of energy losses and errors in the evaluation of the characteristics of information transfer in FOCC QCS. In article the analysis of the energy loss factors in the classical fiber-optic channel is carried out and the additive loss formula is discussed in detail. Then we consider the fiber-optic channel of quantum information transmission with the use of integrated optical devices. The additive formula of optical losses in such a channel is discussed. The features of losses in integrated optical devices are shown. The features of quantum cryptographic system of information transmission are considered. As a result, the model of FOCC QCS taking into account energy losses is presented, which allows competently in theoretical terms and visualize the passage of information through modern quantum cryptographically secure telecommunications while providing control in government structures.


1998 ◽  
Author(s):  
Jin Li ◽  
Jianyi Yang ◽  
Weiqin Zhou ◽  
Ruimin Yin ◽  
Qiang Zhou ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3408
Author(s):  
Aizhan Issatayeva ◽  
Aidana Beisenova ◽  
Daniele Tosi ◽  
Carlo Molardi

Wearable light textiles are gaining widespread interest in application for measurement and monitoring of biophysical parameters. Fiber optic sensors, in particular Bragg Grating (FBG) sensors, can be a competitive method for monitoring of respiratory behavior for chest and abdomen regions since the sensors are able to convert physical movement into wavelength shift. This study aims to show the performance of elastic belts with integrated optical fibers during the breathing activities done by two volunteers. Additionally, the work aims to determine how the positions of the volunteers affect the breathing pattern detected by optical fibers. As a reference, commercial mobile application for sensing vibration is used. The obtained results show that the FBGs are able to detect chest and abdomen movements during breathing and consequently reconstruct the breathing pattern. The accuracy of the results varies for two volunteers but remains consistent.


1997 ◽  
Vol 503 ◽  
Author(s):  
F. Ansari

ABSTRACTIt is possible to monitor the initiation and progress of various mechanical or environmentally induced perturbations in concrete elements by way of fully integrated optical fiber sensors. Geometric adaptability and ease by which optical fibers can be embedded within concrete elements has led to the development of a number of innovative applications for concrete elements. This article is intended for a brief introduction into the theories, principles, and applications of fiber optic sensors as they pertain to applications in concrete.. However, due to the fact that the transduction mechanism in optical fibers is invariant of the materials employed, the principles introduced here also correspond to other structural materials. The only application related differences among various materials pertain to sensitivity and choice of optical fiber sensor types.


1988 ◽  
Author(s):  
P. G. Suchoski ◽  
T. K. Findakly ◽  
F. J. Leonberger

Sign in / Sign up

Export Citation Format

Share Document