LiNbO 3 Integrated Optical Components For Fiber Optic Gyroscopes

Author(s):  
P. G. Suchoski ◽  
T. K. Findakly ◽  
F. J. Leonberger
2019 ◽  
pp. 90-95
Author(s):  
V. A. Minaev ◽  
I. D. Korolev ◽  
O. A. Kulish ◽  
A. V. Mazin

The existing methods of information delivery to the strategic and tactical management of many government agencies are expensive, not always reliable and efficient. Therefore, quantum cryptographic systems (QCS) have been actively developed in recent years. However, there are problems with the use of the QCS associated with the reliability of information transfer. First, the existing fiber-optic communication channels (FOCC) are not designed to transmit single-photon signals, which leads to the complexity of their cryptographic protection. The second is insufficiently methodically developed calculation of energy losses and errors in the evaluation of the characteristics of information transfer in FOCC QCS. In article the analysis of the energy loss factors in the classical fiber-optic channel is carried out and the additive loss formula is discussed in detail. Then we consider the fiber-optic channel of quantum information transmission with the use of integrated optical devices. The additive formula of optical losses in such a channel is discussed. The features of losses in integrated optical devices are shown. The features of quantum cryptographic system of information transmission are considered. As a result, the model of FOCC QCS taking into account energy losses is presented, which allows competently in theoretical terms and visualize the passage of information through modern quantum cryptographically secure telecommunications while providing control in government structures.


2010 ◽  
Vol 53 (3) ◽  
pp. 342-346 ◽  
Author(s):  
M. M. Vekshin ◽  
E. B. Khotnyanskaya ◽  
V. A. Nikitin ◽  
N. A. Yakovenko

1994 ◽  
Vol 158 ◽  
pp. 261-271 ◽  
Author(s):  
V. Coudé du Foresto

Integrated optical components (mostly single-mode fibers and couplers) can be used to achieve several functions that are needed in interferometry: coherent beam transportation and recombination, pathlength modulation and control for fringe tracking and double Fourier interferometry, spatial filtering of the wavefront and interferogram calibration. Their potential is assessed and the main problems encountered in their implementation are discussed: dispersion, polarization behavior, and especially starlight injection.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2460 ◽  
Author(s):  
Jiangtao Lv ◽  
Ming Zhou ◽  
Qiongchan Gu ◽  
Xiaoxiao Jiang ◽  
Yu Ying ◽  
...  

In recent years, the development of metamaterials and metasurfaces has drawn great attention, enabling many important practical applications. Focusing and lensing components are of extreme importance because of their significant potential practical applications in biological imaging, display, and nanolithography fabrication. Metafocusing devices using ultrathin structures (also known as metasurfaces) with superlensing performance are key building blocks for developing integrated optical components with ultrasmall dimensions. In this article, we review the metamaterial superlensing devices working in transmission mode from the perfect lens to two-dimensional metasurfaces and present their working principles. Then we summarize important practical applications of metasurfaces, such as plasmonic lithography, holography, and imaging. Different typical designs and their focusing performance are also discussed in detail.


1998 ◽  
Author(s):  
Jin Li ◽  
Jianyi Yang ◽  
Weiqin Zhou ◽  
Ruimin Yin ◽  
Qiang Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document