scholarly journals Capacity Bounds and User Identification Costs in Rayleigh-Fading Many-Access Channel

Author(s):  
Jyotish Robin ◽  
Elza Erkip
Author(s):  
D. Covarrubias ◽  
A. Mendez ◽  
C. Vargas

This paper evaluates the effects of Rayleigh fading, shadowing, and spatial distribution of the Mobile Terminals (MTs) on the operating performance of Slotted Aloha (S-Aloha) used as a Random Access Channel (RACH). This paper also evaluates the capture probability in a channel exhibiting Rayleigh fading, shadowing, and the effect of spatial distribution of the MTs. In addition, this work presents a different version of the steady-sate probabilities of the Markov chain of S-Aloha considering capture effect. This article simulates the stabilization of S-Aloha by utilizing an algorithm that dynamically controls the retransmission probabilities. Finally, this paper presents a numerical analysis of these simulations and identifies the operating of parameters that have shown to degrade system response.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 120 ◽  
Author(s):  
Shoujun Liu ◽  
Kehao Wang ◽  
Kezhong Liu ◽  
Wei Chen

In this paper, we consider the problem of decision fusion for noncoherent detection in a wireless sensor network. Novel to the current work is the integration of the hybrid multi-access channel (MAC) in the fusion rule design. We assume that sensors transmit their local binary decisions over a hybrid MAC which is a composite of conventional orthogonal and nonorthogonal MACs. Under Rayleigh fading scenario, we present a likelihood ratio (LR)-based fusion rule, which has been shown to be optimal through theoretical analysis and simulation. However, it requires a large amount of computation, which is not easily implemented in resource-constrained sensor networks. Therefore, three sub-optimal alternatives with low-complexity are proposed, namely the weighed energy detector (WED), the deflection-coefficient-maximization (DCM), and the two-step (TS) rules. We show that when the channel signal-to-noise ratio (SNR) is low, the LR-based fusion rule reduces to the WED rule; at high-channel SNR, it is equivalent to the TS rule; and at moderate-channel SNR, it can be approached closely by the DCM rule. Compared with the conventional orthogonal and nonorthogonal MACs, numerical results show that the hybrid MAC with the proposed fusion rules can improve the detection performance when the channel SNR is medium.


Sign in / Sign up

Export Citation Format

Share Document