capture effect
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 43)

H-INDEX

18
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 565
Author(s):  
Xueming Fang ◽  
Bingyou Jiang ◽  
Liang Yuan ◽  
Yuxiang Liang ◽  
Bo Ren ◽  
...  

An experimental study on the flow rate and atomization characteristics of a new gas–liquid two-phase flow nozzle was carried out to use high-concentration respirable dust in the workplace of high-efficiency sedimentation coal production based on the gas–liquid two-phase flow nozzle technology. The simulation roadway of dust fall in large coal mines was constructed, and the respirable rock dust produced by fully mechanized mining surfaces was chosen as the research object. The effects of humidity on the capture effect of respirable rock dust were analyzed in the experimental study. The results demonstrated that: (1) the distribution range of the particle size of fogdrops declines with the reduction in fogdrops D50, D[3,2] and D[4,3], which are produced by gas–liquid two-phase flow nozzles. (2) The initial ambient humidity in the simulated roadway was 64.8% RH. After the gas–liquid two-phase flow spray was started, the ambient humidity was elevated by 23.2 to 23.5% RH within 840s and tended to be stable and no longer grew after reaching 88.0–88.3% RH. The initial growth rate of the ambient humidity in the simulated roadway was high, and then was gradually slowed down. (3) Humidity is an important factor influencing the collection of respirable dust. The humidity at 10.0 m leeward of the dust-producing point was increased by 19.6% RH, and the sedimentation rate of respirable dust was increased by 6.73%; the two growth rates were 13.1% RH and 9.90% at 20.0 m; 16.4% RH and 15.42% at 30.0 m; 18.4% RH and 11.20% at 40.0 m. In practical applications of the gas–liquid two-phase flow nozzle in coal mining activities, attention shall be paid to not only the influences of its atomization characteristics on the capture effect of respirable dust but also the influences of the flow rate of the nozzle on the humidity of the working surface. Appropriate gas and water supply pressures shall be chosen according to the space and respirable dust concentration on the working surface to realize a better dust removal effect.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
S. Villalba-Chávez ◽  
A. E. Shabad ◽  
C. Müller

A Correction to this paper has been published: 10.1140/epjc/s10052-021-09046-3


2021 ◽  
Vol 8 (8) ◽  
pp. 202172
Author(s):  
You-Jun Lin ◽  
Sheng-Kai Chang ◽  
Yu-Hsiang Lai ◽  
Jing-Tang Yang

Unlike other insects, a butterfly uses a small amplitude of the wing-pitch motion for flight. From an analysis of the dynamics of real flying butterflies, we show that the restrained amplitude of the wing-pitch motion enhances the wake-capture effect so as to enhance forward propulsion. A numerical simulation refined with experimental data shows that, for a small amplitude of the wing-pitch motion, the shed vortex generated in the downstroke induces air in the wake region to flow towards the wings. This condition enables a butterfly to capture an induced flow and to acquire an additional forward propulsion, which accounts for more than 47% of the thrust generation. When the amplitude of the wing-pitch motion exceeds 45°, the flow induced by the shed vortex drifts away from the wings; it attenuates the wake-capture effect and causes the butterfly to lose a part of its forward propulsion. Our results provide one essential aerodynamic feature for a butterfly to adopt a small amplitude of the wing-pitch motion to enhance the wake-capture effect and forward propulsion. This work clarifies the variation of the flow field correlated with the wing-pitch motion, which is useful in the design of wing kinematics of a micro-aerial vehicle.


2021 ◽  
pp. 130578
Author(s):  
Lingyu Wang ◽  
Teng Li ◽  
Xiuting Dong ◽  
Maobing Pang ◽  
Songtao Xiao ◽  
...  

Fuel ◽  
2021 ◽  
Vol 290 ◽  
pp. 119980
Author(s):  
Zeyu Xue ◽  
Lu Dong ◽  
Zhaoping Zhong ◽  
Xudong Lai ◽  
Yaji Huang

Author(s):  
Szu-Lin Su ◽  
Tsung-Hsiu Chih ◽  
Yuan-Chun Tsai ◽  
Hsieh-Cheng Liao ◽  
Yu-Chia Wang

AbstractIn this paper, we develop a physical/medium-access-control cross layer design to improve system throughput with the consideration of fairness for IEEE 802.11 WLAN. From PHY layer perspective, when an access collision occurs, the access point can still decode the corresponding data successfully if the received signal to interference plus noise ratio is larger than the threshold. This phenomenon is referred to as the capture effect. To improve system throughput, this work proposes a Differential Reception-Power Power Control scheme to take advantage of the capture effect. However, the proposed power control scheme cannot provide a fair transmission environment even though it improves the system throughput. To resolve this problem, this work proposes two methods: the adjustment of contention window size and the modification of probability mass function for the selection of the backoff value. The simulation results demonstrate that the proposed schemes can not only remarkably improve system throughput, but also provide a fair transmission environment.


Sign in / Sign up

Export Citation Format

Share Document