A Shape Feature Extraction Method Based on 3D Convolution Masks

Author(s):  
Motofumi T. Suzuki ◽  
Yoshitomo Yaginuma ◽  
Tsuneo Yamada ◽  
Yasutaka Shimizu
2021 ◽  
Vol 2095 (1) ◽  
pp. 012053
Author(s):  
Xiaoqi Wang ◽  
Jian Zhang

Abstract Image shape extraction is an important step in the image analysis, AI electronic industry and automation, as well as a significant part of content-based image retrieval(CBIR), which cannot be separated from contour extraction. However, traditional approach of the border following algorithm is susceptible to noise interference, thus the shape extracted is always complex in real images and cannot express feature of the target image well. Therefore, an improved shape feature extraction method is proposed, which converts color space into HSV model when preprocessing, filters contour by area size, merges adjacent contours by drawing convex hull and filters with template shapes. Lastly, this method is tested on UAV123 and YCB_Video dataset, which showed that the proportion of valid contour improved from less than 10% to 87.7% based on border following algorithm. In the experiment of OPenCV open source library in Visual Studio environment, we hope to improve the extraction efficiency of shape features.


Author(s):  
Hongjun Guo ◽  
Lili Chen

With the advancements of computer technology, image recognition technology has been more and more widely applied and feature extraction is a core problem of image recognition. In study, image recognition classifies the processed image and identifies the category it belongs to. By selecting the feature to be extracted, it measures the necessary parameters and classifies according to the result. For better recognition, it needs to conduct structural analysis and image description of the entire image and enhance image understanding through multi-object structural relationship. The essence of Radon transform is to reconstruct the original N-dimensional image in N-dimensional space according to the N-1 dimensional projection data of N-dimensional image in different directions. The Radon transform of image is to extract the feature in the transform domain and map the image space to the parameter space. This paper study the inverse problem of Radon transform of the upper semicircular curve with compact support and continuous in the support. When the center and radius of a circular curve change in a certain range, the inversion problem is unique when the Radon transform along the upper semicircle curve is known. In order to further improve the robustness and discrimination of the features extracted, given the image translation or proportional scaling and the removal of impact caused by translation and proportion, this paper has proposed an image similarity invariant feature extraction method based on Radon transform, constructed Radon moment invariant and shown the description capacity of shape feature extraction method on shape feature by getting intra-class ratio. The experiment result has shown that the method of this paper has overcome the flaws of cracks, overlapping, fuzziness and fake edges which exist when extracting features alone, it can accurately extract the corners of the digital image and has good robustness to noise. It has effectively improved the accuracy and continuity of complex image feature extraction.


2020 ◽  
Vol 27 (4) ◽  
pp. 313-320 ◽  
Author(s):  
Xuan Xiao ◽  
Wei-Jie Chen ◽  
Wang-Ren Qiu

Background: The information of quaternary structure attributes of proteins is very important because it is closely related to the biological functions of proteins. With the rapid development of new generation sequencing technology, we are facing a challenge: how to automatically identify the four-level attributes of new polypeptide chains according to their sequence information (i.e., whether they are formed as just as a monomer, or as a hetero-oligomer, or a homo-oligomer). Objective: In this article, our goal is to find a new way to represent protein sequences, thereby improving the prediction rate of protein quaternary structure. Methods: In this article, we developed a prediction system for protein quaternary structural type in which a protein sequence was expressed by combining the Pfam functional-domain and gene ontology. turn protein features into digital sequences, and complete the prediction of quaternary structure through specific machine learning algorithms and verification algorithm. Results: Our data set contains 5495 protein samples. Through the method provided in this paper, we classify proteins into monomer, or as a hetero-oligomer, or a homo-oligomer, and the prediction rate is 74.38%, which is 3.24% higher than that of previous studies. Through this new feature extraction method, we can further classify the four-level structure of proteins, and the results are also correspondingly improved. Conclusion: After the applying the new prediction system, compared with the previous results, we have successfully improved the prediction rate. We have reason to believe that the feature extraction method in this paper has better practicability and can be used as a reference for other protein classification problems.


Sign in / Sign up

Export Citation Format

Share Document