Dictionary learning on l1-norm fidelity for non-key frames in distributed compressed video sensing

Author(s):  
Tsugumi Oishi ◽  
Yoshimitsu Kuroki
Author(s):  
Manar Abduljabbar Ahmad Mizher ◽  
Mei Choo Ang ◽  
Siti Norul Huda Sheikh Abdullah ◽  
Kok Weng Ng
Keyword(s):  
L1 Norm ◽  

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2305 ◽  
Author(s):  
Zhongliang Wang ◽  
Hua Xiao

The huge volume of hyperspectral imagery demands enormous computational resources, storage memory, and bandwidth between the sensor and the ground stations. Compressed sensing theory has great potential to reduce the enormous cost of hyperspectral imagery by only collecting a few compressed measurements on the onboard imaging system. Inspired by distributed source coding, in this paper, a distributed compressed sensing framework of hyperspectral imagery is proposed. Similar to distributed compressed video sensing, spatial-spectral hyperspectral imagery is separated into key-band and compressed-sensing-band with different sampling rates during collecting data of proposed framework. However, unlike distributed compressed video sensing using side information for reconstruction, the widely used spectral unmixing method is employed for the recovery of hyperspectral imagery. First, endmembers are extracted from the compressed-sensing-band. Then, the endmembers of the key-band are predicted by interpolation method and abundance estimation is achieved by exploiting sparse penalty. Finally, the original hyperspectral imagery is recovered by linear mixing model. Extensive experimental results on multiple real hyperspectral datasets demonstrate that the proposed method can effectively recover the original data. The reconstruction peak signal-to-noise ratio of the proposed framework surpasses other state-of-the-art methods.


2019 ◽  
Vol 61 (10) ◽  
pp. 584-590
Author(s):  
Jun-Nian Gou ◽  
Pan-Pan Zhai ◽  
Hai-Ying Dong

Reconstructed images from computed tomography (CT) using the algebraic reconstruction technique (ART) and simultaneous ART (SART) algorithms often suffer from obvious artefacts when only sparse and limited-angle projection data are available. Using the ability of dictionary learning (DL) in image feature extraction and sparse signal representation, a new iterative reconstruction algorithm, ART-DL-L1, is proposed to overcome the aforementioned limitations. This new algorithm is based on DL and an L1 norm constraint, combined with ART. An alternate iterative solving strategy based on an approach of 'ART first, then adaptive dictionary learning' is suggested and is explicitly described in a flowchart depicting the ART-DL-L1 algorithm. For both a noisy projection of 360° sparse data and limitedangle data of 120°, simulation reconstruction results from the classic Shepp-Logan image obtained using ART-DL-L1 appear to be better than those obtained using SART and total variation (TV) algorithms and also better than the cutting-edge ART-DL-L2 algorithm. Five evaluation metrics corresponding to the root-mean-square error (RMSE), the mean absolute error (MAE), the peak signal-to-noise ratio (PSNR), the residuals and the structural similarity (SSIM) index are adopted to estimate the reconstruction effect. The results suggest that the five metrics obtained using ART-DL-L1 outperform those obtained using the other three algorithms. The impact of using patches of various sizes played by the DL part in ART-DL-L1 is considered in the simulations and the patch size achieving the best reconstructed image quality is identified in this case as 25 (5 × 5). Overall, the proposed ART-DL-L1 algorithm may reduce artefacts and suppress noise from incomplete noisy projection CT imaging to some degree.


Sign in / Sign up

Export Citation Format

Share Document