An Intelligent Device Fault Diagnosis Method in Industrial Internet of Things

Author(s):  
D.J. Ning ◽  
Jingyang Yu ◽  
Junli Huang
Author(s):  
Youcef Djenouri ◽  
Asma Belhadi ◽  
Gautam Srivastava ◽  
Uttam Ghosh ◽  
Pushpita Chatterjee ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hanrui Zhang ◽  
Qianmu Li ◽  
Shunmei Meng ◽  
Zhuoran Xu ◽  
Chaoxian Lv

With the rapid development of intelligent manufacturing and Industrial Internet of Things, many industrial control systems have high requirements for the security of the system itself. Failures of industrial control equipment will cause abnormal operation of industrial control equipment and waste of resources. It is very meaningful to detect and identify potential equipment abnormalities and failures in time and implement effective fault tolerance strategies. In the Industrial Internet of Things environment, the instructions and parameters of industrial control equipment often change due to changes in actual requirements. However, it is impractical to customize the learning method for each parameter value. Aiming at the problem, this paper proposes a fault diagnosis model based on ensemble learning and proposes a method of updating voting weights based on dynamic programming to assist decision-making. This method is based on Bagging strategy and combined with dynamic programming voting weight adjustment method to complete fault type prediction. Finally, this paper uses different loads as dynamic conditions; the diagnostic capability of the Bagging-based fault diagnosis integrated model in a dynamically changing industrial control system environment is verified by experiments. The fault diagnosis model of industrial control equipment based on ensemble learning effectively improves the adaptive ability of the model and makes the fault diagnosis framework truly intelligent. The voting weight adjustment method based on dynamic programming further improves the reliability of voting.


2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


Author(s):  
С.Л. Добрынин ◽  
В.Л. Бурковский

Произведен обзор технологий в рамках концепции четвертой промышленной революции, рассмотрены примеры реализации новых моделей управления технологическими процессами на базе промышленного интернета вещей. Описано техническое устройство основных подсистем системы мониторинга и контроля, служащей для повышения осведомленности о фактическом состоянии производственных ресурсов в особенности станков и аддитивного оборудования в режиме реального времени. Архитектура предлагаемой системы состоит из устройства сбора данных (УСД), реализующего быстрый и эффективный сбор данных от станков и шлюза, передающего ликвидную часть информации в облачное хранилище для дальнейшей обработки и анализа. Передача данных выполняется на двух уровнях: локально в цехе, с использованием беспроводной сенсорной сети (WSN) на базе стека протоколов ZigBee от устройства сбора данных к шлюзам и от шлюзов в облако с использованием интернет-протоколов. Разработан алгоритм инициализации протоколов связи между устройством сбора данных и шлюзом, а также алгоритм выявления неисправностей в сети. Расчет фактического времени обработки станочных подсистем позволяет более эффективно планировать профилактическое обслуживание вместо того, чтобы выполнять задачи обслуживания в фиксированные интервалы без учета времени использования оборудования We carried out a review of technologies within the framework of the concept of the fourth industrial revolution; we considered examples of the implementation of new models of process control based on the industrial Internet of things. We described the technical structure of the main subsystems of the monitoring and control system to increase awareness of the actual state of production resources in particular machine tools and additive equipment in real time. The architecture of the proposed system consists of a data acquisition device (DAD) that implements fast and efficient data collection from machines and a gateway that transfers the liquid part of information to the cloud storage for further processing and analysis. We carried out the data transmission at two levels, locally in the workshop, using a wireless sensor network (WSN) based on ZigBee protocol stack from the data acquisition device to the gateways and from the gateways to the cloud using Internet protocols. An algorithm was developed for initializing communication protocols between a data acquisition device and a gateway, as well as an algorithm for detecting network malfunctions. Calculating the actual machining time of machine subsystems allows us to more efficiently scheduling preventive maintenance rather than performing maintenance tasks at fixed intervals without considering equipment usage


Sign in / Sign up

Export Citation Format

Share Document