Memory efficient pass-parallel architecture for JPEG2000 encoding

Author(s):  
M. Dyer ◽  
D. Taubman ◽  
S. Nooshabadi
2017 ◽  
Vol 16 (5) ◽  
pp. 1595-1606 ◽  
Author(s):  
Refka Ghodhbani ◽  
Taoufik Saidani ◽  
Layla Horrigue ◽  
Mohamed Atri

MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 5-6
Author(s):  
Horst D. Simon

Recent events in the high-performance computing industry have concerned scientists and the general public regarding a crisis or a lack of leadership in the field. That concern is understandable considering the industry's history from 1993 to 1996. Cray Research, the historic leader in supercomputing technology, was unable to survive financially as an independent company and was acquired by Silicon Graphics. Two ambitious new companies that introduced new technologies in the late 1980s and early 1990s—Thinking Machines and Kendall Square Research—were commercial failures and went out of business. And Intel, which introduced its Paragon supercomputer in 1994, discontinued production only two years later.During the same time frame, scientists who had finished the laborious task of writing scientific codes to run on vector parallel supercomputers learned that those codes would have to be rewritten if they were to run on the next-generation, highly parallel architecture. Scientists who are not yet involved in high-performance computing are understandably hesitant about committing their time and energy to such an apparently unstable enterprise.However, beneath the commercial chaos of the last several years, a technological revolution has been occurring. The good news is that the revolution is over, leading to five to ten years of predictable stability, steady improvements in system performance, and increased productivity for scientific applications. It is time for scientists who were sitting on the fence to jump in and reap the benefits of the new technology.


PIERS Online ◽  
2007 ◽  
Vol 3 (4) ◽  
pp. 374-378 ◽  
Author(s):  
Yu Liu ◽  
Ziqiang Yang ◽  
Zheng Liang ◽  
Limei Qi

1991 ◽  
Author(s):  
Eric A. Brewer ◽  
Chrysanthos N. Dellarocas ◽  
Adrian Colbrook ◽  
William E. Weihl

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1106
Author(s):  
Vladimir L. Petrović ◽  
Dragomir M. El Mezeni ◽  
Andreja Radošević

Quasi-cyclic low-density parity-check (QC–LDPC) codes are introduced as a physical channel coding solution for data channels in 5G new radio (5G NR). Depending on the use case scenario, this standard proposes the usage of a wide variety of codes, which imposes the need for high encoder flexibility. LDPC codes from 5G NR have a convenient structure and can be efficiently encoded using forward substitution and without computationally intensive multiplications with dense matrices. However, the state-of-the-art solutions for encoder hardware implementation can be inefficient since many hardware processing units stay idle during the encoding process. This paper proposes a novel partially parallel architecture that can provide high hardware usage efficiency (HUE) while achieving encoder flexibility and support for all 5G NR codes. The proposed architecture includes a flexible circular shifting network, which is capable of shifting a single large bit vector or multiple smaller bit vectors depending on the code. The encoder architecture was built around the shifter in a way that multiple parity check matrix elements can be processed in parallel for short codes, thus providing almost the same level of parallelism as for long codes. The processing schedule was optimized for minimal encoding time using the genetic algorithm. The optimized encoder provided high throughputs, low latency, and up-to-date the best HUE.


Sign in / Sign up

Export Citation Format

Share Document