A wireless sensor network framework for large-scale industrial water pollution monitoring

Author(s):  
Yohannes Derbew ◽  
Mulugeta Libsie
Author(s):  
Siuli Roy ◽  
Anurag D ◽  
Somprakash Bandyopadhyay

Air pollution is an important environmental issue that has a direct effect on human health and ecological balance. Factories, power plants, vehicles, windblown dust and wildfires are some of the contributors of to pollution. Reasonable simulation tools exist for evaluating large scale sensor networks, ; however, they fail to capture significant details of node operation or practical aspects of wireless communication. Real life testbeds, capture the realism and bring out important aspects for further research. In this paper, we present an implementation of a wireless sensor network testbed for automatic and real-time monitoring of environmental pollution for the protection of public spaces. The paper describes the physical setup, the sensor node hardware and software architecture for “anytime, anywhere” monitoring and management of pollution data through a single, Web-based graphical user interface. The paper presents practical issues in the integration of sensors, actual power consumption rates and develops a practical hierarchical routing methodology.


Author(s):  
Siuli Roy ◽  
Anurag D ◽  
Somprakash Bandyopadhyay

Air pollution is an important environmental issue that has a direct effect on human health and ecological balance. Factories, power plants, vehicles, windblown dust and wildfires are some of the contributors to pollution. Reasonable simulation tools exist for evaluating large scale sensor networks; however, they fail to capture significant details of node operation or practical aspects of wireless communication. Real life testbeds capture the realism and bring out important aspects for further research. In this article, we present an implementation of a wireless sensor network testbed for automatic and real-time monitoring of environmental pollution for the protection of public spaces. The article describes the physical setup, the sensor node hardware and software architecture for “anytime, anywhere” monitoring and management of pollution data through a single, Web-based graphical user interface. The article presents practical issues in the integration of sensors, actual power consumption rates and develops a practical hierarchical routing methodology.


Author(s):  
Low Tang Jung

Water is a crucial resource for all life on earth, and it is fast becoming one of the limited natural resources to humankind, especially clean drinking water and water for agricultural uses. Sensor technologies and wireless communications (both terrestrial and underwater) have been seriously investigated by researchers to find ways to integrate these technologies for a novel data-sensing and data-collecting network for long-term water pollution monitoring purposes. This chapter describes an IoT-based underwater wireless sensor network (UWSN) which is believed to have a huge potential for monitoring the health of river, lake, reservoir, and marine environment. The sensed data from IoT sensors are communicated wirelessly via acoustic channels to a data collection center for further processing and interpretation. It is foreseeing that judicious deployment of IoT-based UWSN is a promising solution for long-term water quality surveillance.


2013 ◽  
Vol 340 ◽  
pp. 929-932
Author(s):  
Huo You Li ◽  
Shao Jie Chen

The low-consuming wireless sensor network is becoming more and more popular; this essay drafts a proposal for wireless sensor network system design. The proposal describes detailed hardware and software designs of sensor node. With a feature of self-organized and self-adaptive, the system remains keep good communication even the location of network node changes. This system is applicable to synchronized monitoring on water pollution in rivers, lakes, springs and oceans.


Author(s):  
Siuli Roy ◽  
Anurag D ◽  
Somprakash Bandyopadhyay

Air pollution is an important environmental issue that has a direct effect on human health and ecological balance. Factories, power plants, vehicles, windblown dust and wildfires are some of the contributors of to pollution. Reasonable simulation tools exist for evaluating large scale sensor networks, ; however, they fail to capture significant details of node operation or practical aspects of wireless communication. Real life testbeds, capture the realism and bring out important aspects for further research. In this paper, we present an implementation of a wireless sensor network testbed for automatic and real-time monitoring of environmental pollution for the protection of public spaces. The paper describes the physical setup, the sensor node hardware and software architecture for “anytime, anywhere” monitoring and management of pollution data through a single, Web-based graphical user interface. The paper presents practical issues in the integration of sensors, actual power consumption rates and develops a practical hierarchical routing methodology.


2018 ◽  
Vol 14 (8) ◽  
pp. 155014771879584 ◽  
Author(s):  
Danyang Qin ◽  
Yan Zhang ◽  
Jingya Ma ◽  
Ping Ji ◽  
Pan Feng

Due to the advantages of large-scale, data-centric and wide application, wireless sensor networks have been widely used in nowadays society. From the physical layer to the application layer, the multiply increasing information makes the data aggregation technology particularly important for wireless sensor network. Data aggregation technology can extract useful information from the network and reduce the network load, but will increase the network delay. The non-exchangeable feature of the battery of sensor nodes makes the researches on the battery power saving and lifetime extension be carried out extensively. Aiming at the delay problem caused by sleeping mechanism used for energy saving, a Distributed Collision-Free Data Aggregation Scheme is proposed in this article to make the network aggregate data without conflicts during the working states periodically changing so as to save the limited energy and reduce the network delay at the same time. Simulation results verify the better aggregating performance of Distributed Collision-Free Data Aggregation Scheme than other traditional data aggregation mechanisms.


Water distribution system is a network that supplies water to all the consumers through different means. Proper means of providing water to houses without compromising in quantity and quality is always a challenge. As it is a huge network keeping track of the utilization is difficult for the utility. Hence through this project we come up with a solution to solve this issue. Current technologies like Low Power Wide Area Networks, LoRa and sensor deployment techniques have been in research and were also tested in few rural areas but issues due to hardware deployment and large scale real time implementation was a challenge hence through this system we aim to create and simulate a real time scenario to test a sensor network model that could be implemented in large scale further. This project aims in building a wireless sensor network model for a smart water distribution system. In this system there is bidirectional communication between the consumer and the utility. Each house has a meter through which the amount of water consumed is sent to the utility board. The data has two fields containing the house ID and the data (water consumed); it is being sent to the data collection unit (DCU) which in-turn sends it to the central server so that the consumption is monitored in real time. All this is simulated using NETSIM and MATLAB.


Sign in / Sign up

Export Citation Format

Share Document