On the Performance of Distortion-Aware Linear Receivers in Uplink Massive MIMO Systems

Author(s):  
Sina Rezaei Aghdam ◽  
Thomas Eriksson
2016 ◽  
Vol 20 ◽  
pp. 123-132 ◽  
Author(s):  
Haiquan Wang ◽  
Meijun Zhou ◽  
Ruiming Chen ◽  
Wei Zhang

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 391 ◽  
Author(s):  
Jiamin Li ◽  
Qian Lv ◽  
Jing Yang ◽  
Pengcheng Zhu ◽  
Xiaohu You

In this paper, considering a more realistic case where the low-resolution analog-to-digital convertors (ADCs) are employed at receiver antennas, we investigate the spectral and energy efficiency in multi-cell multi-user distributed massive multi-input multi-output (MIMO) systems with two linear receivers. An additive quantization noise model is provided first to study the effects of quantization noise. Using the model provided, the closed-form expressions for the uplink achievable rates with a zero-forcing (ZF) receiver and a maximum ratio combination (MRC) receiver under quantization noise and pilot contamination are derived. Furthermore, the asymptotic achievable rates are also given when the number of quantization bits, the per user transmit power, and the number of antennas per remote antenna unit (RAU) go to infinity, respectively. Numerical results prove that the theoretical analysis is accurate and show that quantization noise degrades the performance in spectral efficiency, but the growth in the number of antennas can compensate for the degradation. Furthermore, low-resolution ADCs with 3 or 4 bits outperform perfect ADCs in energy efficiency. Numerical results imply that it is preferable to use low-resolution ADCs in distributed massive MIMO systems.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1650
Author(s):  
Taehyoung Kim ◽  
Sangjoon Park

In this paper, the scaling laws of scheduling gain and the feasibility of user scheduling for uplink massive multiple input–multiple output (MIMO) systems are investigated by analyzing the second moment of mutual information. We consider two well-known linear receivers of matched filter (MF) and zero-forcing (ZF). The exact distribution of the signal-to-interference-plus-noise ratio (SINR) and its moment-generating function are first obtained, and the approximated variance of the mutual information for a user is derived as a closed form with a function of the number of antennas. The achievable scheduling gain under the optimal user scheduler is then derived using the Gaussianity of the sum rate. From the analyses and simulation results, it is found that the scheduling gain for the MF receiver increases with the number of base station (BS) antennas, while that for the ZF receiver decreases as the number of BS antennas increases, for most cases (except some impractical scenarios). Therefore, it is verified that user scheduling is still beneficial for the MF receiver while random user selection is sufficient for the ZF receiver in massive MIMO systems.


Sign in / Sign up

Export Citation Format

Share Document