A real-time interval constraint propagation method for vehicle localization

Author(s):  
I. K. Kueviakoe ◽  
A. Lambert ◽  
P. Tarroux
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Zhan Wang ◽  
Alain Lambert

Probabilistic techniques (such as Extended Kalman Filter and Particle Filter) have long been used to solve robotic localization and mapping problem. Despite their good performance in practical applications, they could suffer inconsistency problems. This paper proposes an interval analysis based method to estimate the vehicle pose (position and orientation) in a consistent way, by fusing low-cost sensors and map data. We cast the localization problem into an Interval Constraint Satisfaction Problem (ICSP), solved via Interval Constraint Propagation (ICP) techniques. An interval map is built when a vehicle embedding expensive sensors navigates around the environment. Then vehicles with low-cost sensors (dead reckoning and monocular camera) can use this map for ego-localization. Experimental results show the soundness of the proposed method in achieving consistent localization.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Kangni Kueviakoe ◽  
Zhan Wang ◽  
Alain Lambert ◽  
Emmanuelle Frenoux ◽  
Philippe Tarroux

This paper introduces a new interval constraint propagation (ICP) approach dealing with the real-time vehicle localization problem. Bayesian methods like extended Kalman filter (EKF) are classically used to achieve vehicle localization. ICP is an alternative which provides guaranteed localization results rather than probabilities. Our approach assumes that all models and measurement errors are bounded within known limits without any other hypotheses on the probability distribution. The proposed algorithm uses a low-level consistency algorithm and has been validated with an outdoor vehicle equipped with a GPS receiver, a gyro, and odometers. Results have been compared to EKF and other ICP methods such as hull consistency (HC4) and 3-bound (3B) algorithms. Both consistencies of EKF and our algorithm have been experimentally studied.


2021 ◽  
Vol 13 (14) ◽  
pp. 2739
Author(s):  
Huizhong Zhu ◽  
Jun Li ◽  
Longjiang Tang ◽  
Maorong Ge ◽  
Aigong Xu

Although ionosphere-free (IF) combination is usually employed in long-range precise positioning, in order to employ the knowledge of the spatiotemporal ionospheric delays variations and avoid the difficulty in choosing the IF combinations in case of triple-frequency data processing, using uncombined observations with proper ionospheric constraints is more beneficial. Yet, determining the appropriate power spectral density (PSD) of ionospheric delays is one of the most important issues in the uncombined processing, as the empirical methods cannot consider the actual ionosphere activities. The ionospheric delays derived from actual dual-frequency phase observations contain not only the real-time ionospheric delays variations, but also the observation noise which could be much larger than ionospheric delays changes over a very short time interval, so that the statistics of the ionospheric delays cannot be retrieved properly. Fortunately, the ionospheric delays variations and the observation noise behave in different ways, i.e., can be represented by random-walk and white noise process, respectively, so that they can be separated statistically. In this paper, we proposed an approach to determine the PSD of ionospheric delays for each satellite in real-time by denoising the ionospheric delay observations. Based on the relationship between the PSD, observation noise and the ionospheric observations, several aspects impacting the PSD calculation are investigated numerically and the optimal values are suggested. The proposed approach with the suggested optimal parameters is applied to the processing of three long-range baselines of 103 km, 175 km and 200 km with triple-frequency BDS data in both static and kinematic mode. The improvement in the first ambiguity fixing time (FAFT), the positioning accuracy and the estimated ionospheric delays are analysed and compared with that using empirical PSD. The results show that the FAFT can be shortened by at least 8% compared with using a unique empirical PSD for all satellites although it is even fine-tuned according to the actual observations and improved by 34% compared with that using PSD derived from ionospheric delay observations without denoising. Finally, the positioning performance of BDS three-frequency observations shows that the averaged FAFT is 226 s and 270 s, and the positioning accuracies after ambiguity fixing are 1 cm, 1 cm and 3 cm in the East, North and Up directions for static and 3 cm, 3 cm and 6 cm for kinematic mode, respectively.


2020 ◽  
Vol 10 (11) ◽  
pp. 3788 ◽  
Author(s):  
Qi Ouyang ◽  
Yongbo Lv ◽  
Jihui Ma ◽  
Jing Li

With the development of big data and deep learning, bus passenger flow prediction considering real-time data becomes possible. Real-time traffic flow prediction helps to grasp real-time passenger flow dynamics, provide early warning for a sudden passenger flow and data support for real-time bus plan changes, and improve the stability of urban transportation systems. To solve the problem of passenger flow prediction considering real-time data, this paper proposes a novel passenger flow prediction network model based on long short-term memory (LSTM) networks. The model includes four parts: feature extraction based on Xgboost model, information coding based on historical data, information coding based on real-time data, and decoding based on a multi-layer neural network. In the feature extraction part, the data dimension is increased by fusing bus data and points of interest to improve the number of parameters and model accuracy. In the historical information coding part, we use the date as the index in the LSTM structure to encode historical data and provide relevant information for prediction; in the real-time data coding part, the daily half-hour time interval is used as the index to encode real-time data and provide real-time prediction information; in the decoding part, the passenger flow data for the next two 30 min interval outputs by decoding all the information. To our best knowledge, it is the first time to real-time information has been taken into consideration in passenger flow prediction based on LSTM. The proposed model can achieve better accuracy compared to the LSTM and other baseline methods.


2013 ◽  
Vol 333-335 ◽  
pp. 650-655
Author(s):  
Peng Hui Niu ◽  
Yin Lei Qin ◽  
Shun Ping Qu ◽  
Yang Lou

A new signal processing method for phase difference estimation was proposed based on time-varying signal model, whose frequency, amplitude and phase are time-varying. And then be applied Coriolis mass flowmeter signal. First, a bandpass filtering FIR filter was applied to filter the sensor output signal in order to improve SNR. Then, the signal frequency could be calculated based on short-time frequency estimation. Finally, by short window intercepting, the DTFT algorithm with negative frequency contribution was introduced to calculate the real-time phase difference between two enhanced signals. With the frequency and the phase difference obtained, the time interval of two signals was calculated. Simulation results show that the algorithms studied are efficient. Furthermore, the computation of algorithms studied is simple so that it can be applied to real-time signal processing for Coriolis mass flowmeter.


Author(s):  
Walid Habib ◽  
Allen C. Ward

Abstract The “labeled interval calculus” is a formal system that performs quantitative inferences about sets of artifacts under sets of operating conditions. It refines and extends the idea of interval constraint propagation, and has been used as the basis of a program called a “mechanical design compiler,” which provides the user with a “high level language” in which design problems for systems to be built of cataloged components can be quickly and easily formulated. The compiler then selects optimal combinations of catalog numbers. Previous work has tested the calculus empirically, but only parts of the calculus have been proven mathematically. This paper presents a new version of the calculus and shows how to extend the earlier proofs to prove the entire system. It formalizes the effects of toleranced manufacturing processes through the concept of a “selectable subset” of the artifacts under consideration. It demonstrates the utility of distinguishing between statements which are true for all artifacts under consideration, and statements which are merely true for some artifact in each selectable subset.


Sign in / Sign up

Export Citation Format

Share Document