scholarly journals Shared Driving Control between Human and Autonomous Driving System via Conflict resolution using Non-Cooperative Game Theory

Author(s):  
Shriram C Jugade ◽  
Alessandro C Victorino ◽  
Veronique B Cherfaoui
2009 ◽  
Vol 19 (2) ◽  
pp. 225-238 ◽  
Author(s):  
Serafim Opricovic

Five approaches in conflict resolution are distinguished, based on cooperativeness and aggressiveness in resolving conflict. Compromise based on cooperativeness is emphasized here as a solution in conflict resolution. Cooperative game theory oriented towards aiding the conflict resolution is considered and the compromise value for TU(transferable utility)-game is presented. The method VIKOR could be applied to determine compromise solution of a multicriteria decision making problem with noncommensurable and conflicting criteria. Compromise is considered as an intermediate state between conflicting objectives or criteria reached by mutual concession. The applicability of the cooperative game theory and the VIKOR method for conflict resolution is illustrated.


Author(s):  
Wulf Loh ◽  
Janina Loh

In this chapter, we give a brief overview of the traditional notion of responsibility and introduce a concept of distributed responsibility within a responsibility network of engineers, driver, and autonomous driving system. In order to evaluate this concept, we explore the notion of man–machine hybrid systems with regard to self-driving cars and conclude that the unit comprising the car and the operator/driver consists of such a hybrid system that can assume a shared responsibility different from the responsibility of other actors in the responsibility network. Discussing certain moral dilemma situations that are structured much like trolley cases, we deduce that as long as there is something like a driver in autonomous cars as part of the hybrid system, she will have to bear the responsibility for making the morally relevant decisions that are not covered by traffic rules.


Author(s):  
Cunbin Li ◽  
Ding Liu ◽  
Yi Wang ◽  
Chunyan Liang

AbstractAdvanced grid technology represented by smart grid and energy internet is the core feature of the next-generation power grid. The next-generation power grid will be a large-scale cyber-physical system (CPS), which will have a higher level of risk management due to its flexibility in sensing and control. This paper explains the methods and results of a study on grid CPS’s behavior after risk. Firstly, a behavior model based on hybrid automata is built to simulate grid CPS’s risk decisions. Then, a GCPS risk transfer model based on cooperative game theory is built. The model allows decisions to ignore complex network structures. On this basis, a modified applicant-proposing algorithm to achieve risk optimum is proposed. The risk management model proposed in this paper can provide references for power generation and transmission decision after risk as well as risk aversion, an empirical study in north China verifies its validity.


2021 ◽  
Vol 145 ◽  
pp. 111056
Author(s):  
Andrey Churkin ◽  
Janusz Bialek ◽  
David Pozo ◽  
Enzo Sauma ◽  
Nikolay Korgin

2021 ◽  
Vol 6 (4) ◽  
pp. 7301-7308
Author(s):  
Tianze Wu ◽  
Baofu Wu ◽  
Sa Wang ◽  
Liangkai Liu ◽  
Shaoshan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document