From the Spectrum of the Adjacency Matrix to the Spectrum of Directed Edge Matrix: Counting Cycles of a Bipartite Graph Through a Simple Equation

Author(s):  
Ali Dehghan ◽  
Amir H. Banihashemi
10.37236/212 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
László Babai ◽  
Barry Guiduli

Let $G$ be a graph on $n$ vertices with spectral radius $\lambda$ (this is the largest eigenvalue of the adjacency matrix of $G$). We show that if $G$ does not contain the complete bipartite graph $K_{t ,s}$ as a subgraph, where $2\le t \le s$, then $$\lambda \le \Big((s-1)^{1/t }+o(1)\Big)n^{1-1/t }$$ for fixed $t$ and $s$ while $n\to\infty$. Asymptotically, this bound matches the Kővári-Turán-Sós upper bound on the average degree of $G$ (the Zarankiewicz problem).


10.37236/7947 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Dillon Mayhew ◽  
Irene Pivotto ◽  
Gordon Royle

A pair $(A,B)$ of square $(0,1)$-matrices is called a Lehman pair if $AB^T=J+kI$ for some integer $k\in\{-1,1,2,3,\ldots\}$. In this case $A$ and $B$ are called Lehman matrices. This terminology arises because Lehman showed that the rows with the fewest ones in any non-degenerate minimally nonideal (mni) matrix $M$ form a square Lehman submatrix of $M$. Lehman matrices with $k=-1$ are essentially equivalent to partitionable graphs (also known as $(\alpha,\omega)$-graphs), so have been heavily studied as part of attempts to directly classify minimal imperfect graphs. In this paper, we view a Lehman matrix as the bipartite adjacency matrix of a regular bipartite graph, focusing in particular on the case where the graph is cubic. From this perspective, we identify two constructions that generate cubic Lehman graphs from smaller Lehman graphs. The most prolific of these constructions involves repeatedly replacing suitable pairs of edges with a particular $6$-vertex subgraph that we call a $3$-rung ladder segment. Two decades ago, Lütolf & Margot initiated a computational study of mni matrices and constructed a catalogue containing (among other things) a listing of all cubic Lehman matrices with $k =1$ of order up to $17 \times 17$.  We verify their catalogue (which has just one omission), and extend the computational results to $20 \times 20$ matrices. Of the $908$ cubic Lehman matrices (with $k=1$) of order up to $20 \times 20$, only two do not arise from our $3$-rung ladder construction. However these exceptions can be derived from our second construction, and so our two constructions cover all known cubic Lehman matrices with $k=1$.


Author(s):  
Huiqiu Lin ◽  
Bo Ning ◽  
Baoyindureng Wu

Abstract Bollobás and Nikiforov (J. Combin. Theory Ser. B.97 (2007) 859–865) conjectured the following. If G is a Kr+1-free graph on at least r+1 vertices and m edges, then ${\rm{\lambda }}_1^2(G) + {\rm{\lambda }}_2^2(G) \le (r - 1)/r \cdot 2m$ , where λ1 (G)and λ2 (G) are the largest and the second largest eigenvalues of the adjacency matrix A(G), respectively. In this paper we confirm the conjecture in the case r=2, by using tools from doubly stochastic matrix theory, and also characterize all families of extremal graphs. Motivated by classic theorems due to Erdős and Nosal respectively, we prove that every non-bipartite graph G of order n and size m contains a triangle if one of the following is true: (i) ${{\rm{\lambda }}_1}(G) \ge \sqrt {m - 1} $ and $G \ne {C_5} \cup (n - 5){K_1}$ , and (ii) ${{\rm{\lambda }}_1}(G) \ge {{\rm{\lambda }}_1}(S({K_{[(n - 1)/2],[(n - 1)/2]}}))$ and $G \ne S({K_{[(n - 1)/2],[(n - 1)/2]}})$ , where $S({K_{[(n - 1)/2],[(n - 1)/2]}})$ is obtained from ${K_{[(n - 1)/2],[(n - 1)/2]}}$ by subdividing an edge. Both conditions are best possible. We conclude this paper with some open problems.


2017 ◽  
Vol 11 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Peter Rowlinson

Let G be a connected non-regular non-bipartite graph whose adjacency matrix has spectrum p,?(k),?(l), where k,l ? N and p > ? > ?. We show that if ? is non-main then ?(G) ? 1 + ? - ??, with equality if and only if G is of one of three types, derived from a strongly regular graph, a symmetric design or a quasi-symmetric design (with appropriate parameters in each case).


2015 ◽  
Vol 28 ◽  
Author(s):  
Randall Elzinga

Let G be a graph and let A and D be the adjacency matrix of G and diagonal matrix of vertex degrees of G respectively. If each vertex degree is positive, then the normalized adjacency matrix of G is \hat{A} = D^(−1/2)AD^(−1/2). A classification is given of those graphs for which the all eigenvalues of the normalized adjacency matrix are integral. The problem of determining those graphs G for which \lambda \in Q for each eigenvalue of \hat{A}(G) is considered. These graphs are called normalized rational. It will be shown that a semiregular bipartite graph G with vertex degrees r and s is normalized rational if and only if every eigenvalue of A is a rational multiple of (rs)^{1/2}. This result will be used to classify the values of n for which the semiregular graph (with vertex degrees 2 and n − 1) obtained from subdividing each edge of K_n is normalized rational. Necessary conditions for the k-uniform complete hypergraph on n vertices to be normalized rational are also given. Finally, conditions for the incidence graphs of Steiner triple and quadruple systems to be normalized rational are given.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Guidong Yu ◽  
Gaixiang Cai ◽  
Miaolin Ye ◽  
Jinde Cao

LetGbe an undirected simple graph of ordern. LetA(G)be the adjacency matrix ofG, and letμ1(G)≤μ2(G)≤⋯≤μn(G)be its eigenvalues. The energy ofGis defined asℰ(G)=∑i=1n‍|μi(G)|. Denote byGBPTa bipartite graph. In this paper, we establish the sufficient conditions forGhaving a Hamiltonian path or cycle or to be Hamilton-connected in terms of the energy of the complement ofG, and give the sufficient condition forGBPThaving a Hamiltonian cycle in terms of the energy of the quasi-complement ofGBPT.


2019 ◽  
Vol 10 (3) ◽  
pp. 565-573
Author(s):  
Keerthi G. Mirajkar ◽  
Bhagyashri R. Doddamani

2018 ◽  
Vol 9 (12) ◽  
pp. 2147-2152
Author(s):  
V. Raju ◽  
M. Paruvatha vathana

10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


Author(s):  
S. Yahya Mohamed ◽  
A. Mohamed Ali

In this paper, the notion of energy extended to spherical fuzzy graph. The adjacency matrix of a spherical fuzzy graph is defined and we compute the energy of a spherical fuzzy graph as the sum of absolute values of eigenvalues of the adjacency matrix of the spherical fuzzy graph. Also, the lower and upper bounds for the energy of spherical fuzzy graphs are obtained.


Sign in / Sign up

Export Citation Format

Share Document