Identifying the Operational Design Domain for an Automated Driving System through Assessed Risk

Author(s):  
Chung Won Lee ◽  
Nasif Nayeer ◽  
Danson Evan Garcia ◽  
Ankur Agrawal ◽  
Bingbing Liu
2021 ◽  
Vol 27 (8) ◽  
pp. 796-810
Author(s):  
Masao Ito

There is no standard method for describing the Operational Design Domain (ODD) in automated driving vehicles. There are many elements in the operating domain, including the external environment, and it is necessary to connect them with the internal state of the automated driving system. Its content ultimately requires the user's understanding. The description method of this ODD is summarised from the aspect of safety. Consistency with standards and guidelines will also be considered.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Patrick Weissensteiner ◽  
Georg Stettinger ◽  
Johannes Rumetshofer ◽  
Daniel Watzenig

Virtual testing using simulation will play a significant role in future safety validation procedures for automated driving systems, as it provides the needed scalability for executing a scenario-based assessment approach. This article combines multiple essential aspects that are necessary for the virtual validation of such systems. First, a general framework that contains the vital subsystems needed for virtual validation is introduced. Secondly, the interfaces between the subsystems are explored. Additionally, the concept of model fidelities is presented and extended towards all relevant subsystems. For an automated lane-keeping system with two different definitions of an operational design domain, all relevant subsystems are defined and integrated into an overall simulation framework. The resulting difference between both operational design domains is the occurrence of lateral manoeuvres, leading to greater demands of the fidelity of the vehicle dynamics model. The simulation results support the initial assumption that by extending the operation domain, the requirements for all subsystems are subject to adaption. As an essential aspect of harmonising virtual validation frameworks, the article identifies four separate layers and their corresponding parameters. In particular, the tool-specific co-simulation capability layer is critical, as it enables model exchange through consistently defined interfaces and reduces the integration effort. The introduction of this layered architecture for virtual validation frameworks enables further cross-domain collaboration.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 503
Author(s):  
Zicong Meng ◽  
Tao Tang ◽  
Guodong Wei ◽  
Lei Yuan

With the gradual maturity of the automatic train operation (ATO) system in subways, its application scope has also expanded to the high-speed railway field. Considering that the ATO system is still in the early stages of operation, it will take time to fully mature, and definite specifications of the requirements for system operation have not yet been formed. This paper presents the operational design domain (ODD) of the high-speed railway ATO system and proposes a scenario analysis method based on the operational design domain to obtain the input conditions of the system requirements. The article models and verifies the scenario of the linkage control of the door and platform door based on the UPPAAL tools and extracts the input and expected output of the system requirements of the vehicle ATO system. Combined with the input conditions of the system requirements, the system requirements of the vehicle ATO in this scenario are finally obtained, which provides a reference for future functional specification generation and test case generation.


2021 ◽  
Vol 11 (1) ◽  
pp. 845-852
Author(s):  
Aleksandra Rodak ◽  
Paweł Budziszewski ◽  
Małgorzata Pędzierska ◽  
Mikołaj Kruszewski

Abstract In L3–L4 vehicles, driving task is performed primarily by automated driving system (ADS). Automation mode permits to engage in non-driving-related tasks; however, it necessitates continuous vigilance and attention. Although the driver may be distracted, a request to intervene may suddenly occur, requiring immediate and appropriate response to driving conditions. To increase safety, automated vehicles should be equipped with a Driver Intervention Performance Assessment module (DIPA), ensuring that the driver is able to take the control of the vehicle and maintain it safely. Otherwise, ADS should regain control from the driver and perform a minimal risk manoeuvre. The paper explains the essence of DIPA, indicates possible measures, and describes a concept of DIPA framework being developed in the project.


2021 ◽  
Vol 129 ◽  
pp. 103271
Author(s):  
Zhigang Xu ◽  
Zijun Jiang ◽  
Guanqun Wang ◽  
Runmin Wang ◽  
Tingting Li ◽  
...  

Author(s):  
Travis Terry ◽  
Tammy E. Trimble ◽  
Mindy Buchanan-King ◽  
Myra Blanco ◽  
Vikki L. Fitchett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document