scholarly journals Virtual Validation of an Automated Lane-Keeping System with an Extended Operational Design Domain

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Patrick Weissensteiner ◽  
Georg Stettinger ◽  
Johannes Rumetshofer ◽  
Daniel Watzenig

Virtual testing using simulation will play a significant role in future safety validation procedures for automated driving systems, as it provides the needed scalability for executing a scenario-based assessment approach. This article combines multiple essential aspects that are necessary for the virtual validation of such systems. First, a general framework that contains the vital subsystems needed for virtual validation is introduced. Secondly, the interfaces between the subsystems are explored. Additionally, the concept of model fidelities is presented and extended towards all relevant subsystems. For an automated lane-keeping system with two different definitions of an operational design domain, all relevant subsystems are defined and integrated into an overall simulation framework. The resulting difference between both operational design domains is the occurrence of lateral manoeuvres, leading to greater demands of the fidelity of the vehicle dynamics model. The simulation results support the initial assumption that by extending the operation domain, the requirements for all subsystems are subject to adaption. As an essential aspect of harmonising virtual validation frameworks, the article identifies four separate layers and their corresponding parameters. In particular, the tool-specific co-simulation capability layer is critical, as it enables model exchange through consistently defined interfaces and reduces the integration effort. The introduction of this layered architecture for virtual validation frameworks enables further cross-domain collaboration.

2021 ◽  
Vol 27 (8) ◽  
pp. 796-810
Author(s):  
Masao Ito

There is no standard method for describing the Operational Design Domain (ODD) in automated driving vehicles. There are many elements in the operating domain, including the external environment, and it is necessary to connect them with the internal state of the automated driving system. Its content ultimately requires the user's understanding. The description method of this ODD is summarised from the aspect of safety. Consistency with standards and guidelines will also be considered.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 503
Author(s):  
Zicong Meng ◽  
Tao Tang ◽  
Guodong Wei ◽  
Lei Yuan

With the gradual maturity of the automatic train operation (ATO) system in subways, its application scope has also expanded to the high-speed railway field. Considering that the ATO system is still in the early stages of operation, it will take time to fully mature, and definite specifications of the requirements for system operation have not yet been formed. This paper presents the operational design domain (ODD) of the high-speed railway ATO system and proposes a scenario analysis method based on the operational design domain to obtain the input conditions of the system requirements. The article models and verifies the scenario of the linkage control of the door and platform door based on the UPPAAL tools and extracts the input and expected output of the system requirements of the vehicle ATO system. Combined with the input conditions of the system requirements, the system requirements of the vehicle ATO in this scenario are finally obtained, which provides a reference for future functional specification generation and test case generation.


Author(s):  
Abhimanyu Tonk ◽  
Abderraouf Boussif ◽  
Julie Beugin ◽  
Simon Collart-Dutilleul

Information ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 277 ◽  
Author(s):  
Christina Kurpiers ◽  
Bianca Biebl ◽  
Julia Mejia Hernandez ◽  
Florian Raisch

In SAE (Society of Automotive Engineers) Level 2, the driver has to monitor the traffic situation and system performance at all times, whereas the system assumes responsibility within a certain operational design domain in SAE Level 3. The different responsibility allocation in these automation modes requires the driver to always be aware of the currently active system and its limits to ensure a safe drive. For that reason, current research focuses on identifying factors that might promote mode awareness. There is, however, no gold standard for measuring mode awareness and different approaches are used to assess this highly complex construct. This circumstance complicates the comparability and validity of study results. We thus propose a measurement method that combines the knowledge and the behavior pillar of mode awareness. The latter is represented by the relational attention ratio in manual, Level 2 and Level 3 driving as well as the controllability of a system limit in Level 2. The knowledge aspect of mode awareness is operationalized by a questionnaire on the mental model for the automation systems after an initial instruction as well as an extensive enquiry following the driving sequence. Further assessments of system trust, engagement in non-driving related tasks and subjective mode awareness are proposed.


Author(s):  
Nicole M. Corcoran ◽  
Daniel V. McGehee ◽  
T. Zachary Noonan

In 2019, industry is in the testing stages of level 4 SAE/NHTSA automated vehicles. While in testing, L4 vehicles require a safety driver to monitor the driving task at all times. These specially trained drivers must take back control if the vehicle doesn’t seem to be responding correctly to the ever-changing roadway and environment. Research suggests that monitoring the driving task can lead to a decrease in vigilance over time. Recently, Waymo publicly released takeover request and mileage data on its 2018 L4 autonomous vehicle takeover requests. From this data, which was represented in mileage, we created temporal metric which showed that there were typically 150-250 hours without a takeover request. From this we suggest that there may be a decrement in vigilance for Waymo safety drivers. While there are still many unknowns, we suggest Waymo release takeover requests in terms of time rather than mileage and provide more information on the operational design domains of these vehicles. Expanding the content of this publicly-released data could then give researchers and the public more understanding of the conditions under which safety drivers are functioning.


Sign in / Sign up

Export Citation Format

Share Document