Path Tracking Control of Autonomous Ground Vehicles Via Model Predictive Control and Deep Deterministic Policy Gradient Algorithm

Author(s):  
Zhongjin Xue ◽  
Liang Li ◽  
Zhihua Zhong ◽  
Jintao Zhao
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Shuyou Yu ◽  
Matthias Hirche ◽  
Yanjun Huang ◽  
Hong Chen ◽  
Frank Allgöwer

AbstractThis paper reviews model predictive control (MPC) and its wide applications to both single and multiple autonomous ground vehicles (AGVs). On one hand, MPC is a well-established optimal control method, which uses the predicted future information to optimize the control actions while explicitly considering constraints. On the other hand, AGVs are able to make forecasts and adapt their decisions in uncertain environments. Therefore, because of the nature of MPC and the requirements of AGVs, it is intuitive to apply MPC algorithms to AGVs. AGVs are interesting not only for considering them alone, which requires centralized control approaches, but also as groups of AGVs that interact and communicate with each other and have their own controller onboard. This calls for distributed control solutions. First, a short introduction into the basic theoretical background of centralized and distributed MPC is given. Then, it comprehensively reviews MPC applications for both single and multiple AGVs. Finally, the paper highlights existing issues and future research directions, which will promote the development of MPC schemes with high performance in AGVs.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095013
Author(s):  
Chunjiang Bao ◽  
Jiwei Feng ◽  
Jian Wu ◽  
Shifu Liu ◽  
Guangfei Xu ◽  
...  

The current path tracking control method is usually based on the steering wheel angle loop, which often makes the driver lose control of the automatic driving control loop. In order to involve the driver in the automatic driving control loop, and to solve the vehicle path tracking control problem with system robustness and model uncertainty, this paper puts forward a steering torque control method based on model predictive control algorithm. Based on the vehicle model, this method introduces the steering system model and the steering resistance torque model, and calculates the optimal control torque of the vehicle through the real-time vehicle status, so as to make up for the model mismatch, interference and other uncertainties, and ensure the real-time participation of the driver in the automatic driving control loop. To combine the nonlinear vehicle dynamics model with the steering column model, and to take the vehicle state parameters as the feedback variables of the model predictive controller model, then input the solution of the steering superposition control rate into the vehicle model, the design of the steering controller is realized. Finally, to carry out the simulation of lane keeping based on CarSim software and Simulink control model, and the hardware in-the-loop test on the hardware in-the-loop experimental platform of CarSim/LabVIEW-RT. The simulation and test results indicate that the designed torque loop path tracking control method based on model predictive control can help the driver track the target path better.


Sign in / Sign up

Export Citation Format

Share Document