scholarly journals Model predictive control of steering torque in shared driving of autonomous vehicles

2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095013
Author(s):  
Chunjiang Bao ◽  
Jiwei Feng ◽  
Jian Wu ◽  
Shifu Liu ◽  
Guangfei Xu ◽  
...  

The current path tracking control method is usually based on the steering wheel angle loop, which often makes the driver lose control of the automatic driving control loop. In order to involve the driver in the automatic driving control loop, and to solve the vehicle path tracking control problem with system robustness and model uncertainty, this paper puts forward a steering torque control method based on model predictive control algorithm. Based on the vehicle model, this method introduces the steering system model and the steering resistance torque model, and calculates the optimal control torque of the vehicle through the real-time vehicle status, so as to make up for the model mismatch, interference and other uncertainties, and ensure the real-time participation of the driver in the automatic driving control loop. To combine the nonlinear vehicle dynamics model with the steering column model, and to take the vehicle state parameters as the feedback variables of the model predictive controller model, then input the solution of the steering superposition control rate into the vehicle model, the design of the steering controller is realized. Finally, to carry out the simulation of lane keeping based on CarSim software and Simulink control model, and the hardware in-the-loop test on the hardware in-the-loop experimental platform of CarSim/LabVIEW-RT. The simulation and test results indicate that the designed torque loop path tracking control method based on model predictive control can help the driver track the target path better.

2021 ◽  
Vol 2085 (1) ◽  
pp. 012008
Author(s):  
Jimin Yu ◽  
Zhi Yong ◽  
Yousi Wang

Abstract In order to solve the problem of path tracking of a quadrotor UAV, this paper proposes a track tracking control method which combines Model Predictive Control algorithm and PD control method. Model Predictive Control algorithm can generate control input for formation flight and track the specified trajectory. PD control can achieve rapid response to attitude and adjust error quickly. The simulation results verify the effectiveness of the proposed control method.


2019 ◽  
Vol 9 (13) ◽  
pp. 2649 ◽  
Author(s):  
Guoxing Bai ◽  
Yu Meng ◽  
Li Liu ◽  
Weidong Luo ◽  
Qing Gu ◽  
...  

At present, many path tracking controllers are unable to actively adjust the longitudinal velocity according to path information, such as the radius of the curve, to further improve tracking accuracy. For this problem, we propose a new path tracking framework based on model predictive control (MPC). This is a multilayer control system that includes three path tracking controllers with fixed velocities and a velocity decision controller. This new control method is named multilayer MPC. This new control method is compared to other control methods through simulation. In this paper, the maximum values of the displacement error and the heading error of multilayer MPC are 92.92% and 77.02%, respectively, smaller than those of nonlinear MPC. The real-time performance of multilayer MPC is very good, and parallel computation can further improve the real-time performance of this control method. In simulation results, the calculation time of multilayer MPC in each control period does not exceed 0.0130 s, which is much smaller than the control period. In addition, when the error of positioning systems is at the centimeter level, the performance of multilayer MPC is still good.


Author(s):  
Shaosong Li ◽  
Shuai Wang ◽  
Zheng Li ◽  
Shujun Wang ◽  
Yunsheng Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document