Visualizing Complex Ontologies Through Sub-Ontology Extraction

Author(s):  
Alia El Bolock ◽  
Rania Nagy ◽  
Cornelia Herbert ◽  
Slim Abdennadher
Keyword(s):  
Author(s):  
Man Tianxing ◽  
Nataly Zhukova ◽  
Alexander Vodyaho ◽  
Tin Tun Aung

Extracting knowledge from data streams received from observed objects through data mining is required in various domains. However, there is a lack of any kind of guidance on which techniques can or should be used in which contexts. Meta mining technology can help build processes of data processing based on knowledge models taking into account the specific features of the objects. This paper proposes a meta mining ontology framework that allows selecting algorithms for solving specific data mining tasks and build suitable processes. The proposed ontology is constructed using existing ontologies and is extended with an ontology of data characteristics and task requirements. Different from the existing ontologies, the proposed ontology describes the overall data mining process, used to build data processing processes in various domains, and has low computational complexity compared to others. The authors developed an ontology merging method and a sub-ontology extraction method, which are implemented based on OWL API via extracting and integrating the relevant axioms.


2014 ◽  
Vol 539 ◽  
pp. 464-468
Author(s):  
Zhi Min Wang

The paper introduces segmentation ideas in the pretreatment process of web page. By page segmentation technique to extract the accurate information in the extract region, the region was processed to extract according to the rules of ontology extraction , and ultimately get the information you need. Through experiments on two real datasets and compare with related work, experimental results show that this method can achieve good extraction results.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xingsi Xue ◽  
Xiaojing Wu ◽  
Jie Zhang ◽  
Lingyu Zhang ◽  
Hai Zhu ◽  
...  

Aiming at enhancing the communication and information security between the next generation of Industrial Internet of Things (Nx-IIoT) sensor networks, it is critical to aggregate heterogeneous sensor data in the sensor ontologies by establishing semantic connections in diverse sensor ontologies. Sensor ontology matching technology is devoted to determining heterogeneous sensor concept pairs in two distinct sensor ontologies, which is an effective method of addressing the heterogeneity problem. The existing matching techniques neglect the relationships among different entity mapping, which makes them unable to make sure of the alignment’s high quality. To get rid of this shortcoming, in this work, a sensor ontology extraction method technology using Fuzzy Debate Mechanism (FDM) is proposed to aggregate the heterogeneous sensor data, which determines the final sensor concept correspondences by carrying out a debating process among different matchers. More than ever, a fuzzy similarity metric is presented to effectively measure two entities’ similarity values by membership function. It first uses the fuzzy membership function to model two entities’ similarity in vector space and then calculate their semantic distance with the cosine function. The testing cases from Bibliographic data which is furnished by the Ontology Alignment Evaluation Initiative (OAEI) and six sensor ontology matching tasks are used to evaluate the performance of our scheme in the experiment. The robustness and effectiveness of the proposed method are proved by comparing it with the advanced ontology matching techniques.


2021 ◽  
Author(s):  
Yan Hu ◽  
Shujian Sun ◽  
Thomas Rowlands ◽  
Tim Beck ◽  
Joram Matthias Posma

Motivation: The availability of improved natural language processing (NLP) algorithms and models enable researchers to analyse larger corpora using open source tools. Text mining of biomedical literature is one area for which NLP has been used in recent years with large untapped potential. However, in order to generate corpora that can be analyzed using machine learning NLP algorithms, these need to be standardized. Summarizing data from literature to be stored into databases typically requires manual curation, especially for extracting data from result tables. Results: We present here an automated pipeline that cleans HTML files from biomedical literature. The output is a single JSON file that contains the text for each section, table data in machine-readable format and lists of phenotypes and abbreviations found in the article. We analyzed a total of 2,441 Open Access articles from PubMed Central, from both Genome-Wide and Metabolome-Wide Association Studies, and developed a model to standardize the section headers based on the Information Artifact Ontology. Extraction of table data was developed on PubMed articles and fine-tuned using the equivalent publisher versions. Availability: The Auto-CORPus package is freely available with detailed instructions from Github at https://github.com/jmp111/AutoCORPus/.


Sign in / Sign up

Export Citation Format

Share Document