Field-emission characteristics from carbon nanotube field emitter arrays (CNT FEAs) grown on silicon emitters

Author(s):  
T. Yoshimoto ◽  
D. Kamimaru ◽  
H. Iwasaki ◽  
T. Iwata ◽  
K. Matsumoto
2011 ◽  
Vol 222 ◽  
pp. 138-141
Author(s):  
Masayuki Nakamoto ◽  
Jong Hyun Moon

Low work function amorphous carbon Transfer Mold field emitter arrays (a-C-FEAs) have been fabricated by combining the Transfer Mold emitter fabrication method and the emitter material coating method to realize stable vacuum nanoelectronic devices in harsh environments of aerospace. The emitter tips of a-C-FEAs are extremely sharpened to 26.7-30.7 nm of tip radii. Work function of a-C-FEAs was as low as 3.6 eV compared with those of conventional emitter materials such as carbon nanotube of 5.0 eV. Oxygen radical flux intensity of 1015 atoms/cm2•sec was used for the evaluation of field emission characteristics, whose value is 107-108 times higher than those of 107-108 atoms/cm2•sec in aerospace of satellite orbits. As the oxygen radical treatment time increased, turn-on fields of Ni-FEAs exhibited the 2.2 times degradation from 14.9 V/µm to 32.7 V/µm. Those of a-C-FEAs have been keeping almost the same value of 20.8-23.7 V/µm after oxygen radical treatment. The a-C-FEAs exhibit stable field emission characteristics in harsh environments.


2000 ◽  
Vol 147 (12) ◽  
pp. 4705 ◽  
Author(s):  
Hoon Kim ◽  
Byeong-Kwon Ju ◽  
Yun-Hi Lee ◽  
Jin Jang ◽  
Myung-Hwan Oh

2001 ◽  
Vol 1 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Jung Inn Sohn ◽  
Seonghoon Lee ◽  
Yoon-Ho Song ◽  
Sung-Yool Choi ◽  
Kyoung-Ik Cho ◽  
...  

2001 ◽  
Vol 78 (7) ◽  
pp. 901-903 ◽  
Author(s):  
Jung Inn Sohn ◽  
Seonghoon Lee ◽  
Yoon-Ho Song ◽  
Sung-Yool Choi ◽  
Kyoung-Ik Cho ◽  
...  

2000 ◽  
Vol 633 ◽  
Author(s):  
Jung Inn Sohn ◽  
Seonghoon Lee ◽  
Yoon-Ho Song ◽  
Sung-Yool Choi ◽  
Kyoung-Ik Cho ◽  
...  

AbstractWe have grown well-aligned carbon nanotube arrays by thermal chemical vapor deposition at 800°C on Fe nanoparticles deposited by a pulsed laser on a porous Si substrate. Porous Si substrates were prepared by the electrochemical etching of p-Si(100) wafers with resistivities of 3 to 6 ωcm. These well-aligned carbon nanotube field emitter arrays are suitable for electron emission applications such as cold-cathode flat panel displays and vacuum microelectronic devices like microwave power amplifier tubes. Field emission characterization has been performed on the CNT-cathode diode device at room temperature and in a vacuum chamber below 10−6 Torr. The anode is maintained at a distance of 60[.proportional]m away from the carbon nanotube cathode arrays through an insulating spacer of polyvinyl film. The measured field emitting area is 4.0×10−5cm2. Our carbon nanotube field emitter arrays emit 1mA/cm2at the electric field, 2V/[.proportional]m. And they emit a large current density as high as 80mA/cm2 at 3V/[.proportional]m. The open tip structure of our carbon nanotubes and their good adhesion through Fe nanoparticles to the Si substrate are part of the reason why we can attain a large field emission current density within a low field. The field emitter arrays in our diode device are vertically well-aligned carbon nanotubes on the Si-wafer substrate.


2007 ◽  
Vol 90 (8) ◽  
pp. 083506 ◽  
Author(s):  
Chin-Jen Chiang ◽  
Kendrick X. Liu ◽  
Jonathan P. Heritage

Sign in / Sign up

Export Citation Format

Share Document