Effect of electrical aging on field emission from carbon nanotube field emitter arrays

Author(s):  
Je Hwang Ryu ◽  
Ki Seo Kim ◽  
Chang Seok Lee ◽  
Jin Jang ◽  
Kyu Chang Park
2001 ◽  
Vol 1 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Jung Inn Sohn ◽  
Seonghoon Lee ◽  
Yoon-Ho Song ◽  
Sung-Yool Choi ◽  
Kyoung-Ik Cho ◽  
...  

2001 ◽  
Vol 78 (7) ◽  
pp. 901-903 ◽  
Author(s):  
Jung Inn Sohn ◽  
Seonghoon Lee ◽  
Yoon-Ho Song ◽  
Sung-Yool Choi ◽  
Kyoung-Ik Cho ◽  
...  

2000 ◽  
Vol 633 ◽  
Author(s):  
Jung Inn Sohn ◽  
Seonghoon Lee ◽  
Yoon-Ho Song ◽  
Sung-Yool Choi ◽  
Kyoung-Ik Cho ◽  
...  

AbstractWe have grown well-aligned carbon nanotube arrays by thermal chemical vapor deposition at 800°C on Fe nanoparticles deposited by a pulsed laser on a porous Si substrate. Porous Si substrates were prepared by the electrochemical etching of p-Si(100) wafers with resistivities of 3 to 6 ωcm. These well-aligned carbon nanotube field emitter arrays are suitable for electron emission applications such as cold-cathode flat panel displays and vacuum microelectronic devices like microwave power amplifier tubes. Field emission characterization has been performed on the CNT-cathode diode device at room temperature and in a vacuum chamber below 10−6 Torr. The anode is maintained at a distance of 60[.proportional]m away from the carbon nanotube cathode arrays through an insulating spacer of polyvinyl film. The measured field emitting area is 4.0×10−5cm2. Our carbon nanotube field emitter arrays emit 1mA/cm2at the electric field, 2V/[.proportional]m. And they emit a large current density as high as 80mA/cm2 at 3V/[.proportional]m. The open tip structure of our carbon nanotubes and their good adhesion through Fe nanoparticles to the Si substrate are part of the reason why we can attain a large field emission current density within a low field. The field emitter arrays in our diode device are vertically well-aligned carbon nanotubes on the Si-wafer substrate.


2007 ◽  
Vol 90 (8) ◽  
pp. 083506 ◽  
Author(s):  
Chin-Jen Chiang ◽  
Kendrick X. Liu ◽  
Jonathan P. Heritage

2009 ◽  
Vol 1173 ◽  
Author(s):  
Hidetoshi Matsumoto ◽  
Kenichi Suzuki ◽  
Kazuma Tsuboi ◽  
Mie Minagawa ◽  
Akihiko Tanioka ◽  
...  

AbstractThermal-stable, conductive, and flexible carbon fabric (CF), which is composed of thin carbon fibers prepared by electrospinning, was used for the substrate of carbon nanotube (CNT) field emitter arrays. The field emitter arrays were prepared by chemical vapor deposition (CVD). The current density-electric field characteristics revealed that the CNT field emitter arrays on CF produced a higher current density at a lower turn-on voltage compared to ones on a Si substrate. This emitter integrated with a gate electrode based on hierarchy-structured carbon materials, CNTs on CF, can be used for light sources, displays, and other electronic devices.


Author(s):  
Soichiro Tsujino ◽  
Martin L. Paraliev ◽  
Christopher Gough ◽  
Anna Mustonen ◽  
Paul Beaud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document