Location-based burst detection algorithm for georeferenced document streams based on user's moving direction

Author(s):  
Tomoki Matsui ◽  
Keiichi Tamura ◽  
Hajime Kitakami
2018 ◽  
Vol 2018 (16) ◽  
pp. 224-1-224-5
Author(s):  
Stephen Itschner ◽  
Kevin Bandura ◽  
Xin Li

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1363 ◽  
Author(s):  
Weiping Cheng ◽  
Gang Xu ◽  
Hongji Fang ◽  
Dandan Zhao

This paper describes an infrastructure to detect burst events in a water distribution network, which we illustrate using the Guangzhou water distribution system (WDS). We consider three issues: The feasibility and capability of accurate detection, the layout and design of the monitoring infrastructure, and the burst event detection algorithm. Background noise is identified by analyzing the monitored data. A burst event can be accurately detected only when the impact of the burst can be differentiated from the background noise. We hypothesize that there is a minimum pipe diameter below which accurate burst detection is impossible. We found that data from at least two sensors close to the burst event are required to reduce detection errors.


Author(s):  
D. Antoniou ◽  
M. Paschou ◽  
E. Sakkopoulos ◽  
E. Sourla ◽  
G. Tzimas ◽  
...  

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Kunheng Zou ◽  
Peng Sun ◽  
Jicai Deng ◽  
Kexian Gong ◽  
Zilong Liu

In recent years, distributed unique word (DUW) has been widely used in satellite single carrier TDMA signals, such as very small aperture terminal (VSAT) satellite systems. Different from the centralized structure of traditional unique word, DUW is uniformly dispersed in a burst signal, where the traditional unique word detection methods are not applicable anymore. For this, we propose a robust burst detection algorithm based on DUW. Firstly, we allocated the sliding detection windows with the same structures as DUW in order to effectively detect it. Secondly, we adopt the method of time delay conjugate multiplication to eliminate the influence of frequency offset on detection performance. Due to the uniform dispersion of DUW, it naturally has two different kinds of time delays, namely the delay within the group and the delay between the two groups. So, we divide the traditional dual correlation formula into two parts to calculate them separately and obtain a dual correlation detection algorithm, which is suitable for DUW. Simulation and experimental results demonstrate that when the distribution structure of DUW changes, detection probability of the proposed algorithm fluctuates little, and its variance is 1.56×10−5, which is 99.83% lower than the existing DUW detection algorithms. In addition, its signal to noise ratio (SNR) threshold is about 1 dB lower than the existing algorithms under the same circumstance of the missed detection probability.


Sign in / Sign up

Export Citation Format

Share Document