scholarly journals Study on Pipe Burst Detection Frame Based on Water Distribution Model and Monitoring System

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1363 ◽  
Author(s):  
Weiping Cheng ◽  
Gang Xu ◽  
Hongji Fang ◽  
Dandan Zhao

This paper describes an infrastructure to detect burst events in a water distribution network, which we illustrate using the Guangzhou water distribution system (WDS). We consider three issues: The feasibility and capability of accurate detection, the layout and design of the monitoring infrastructure, and the burst event detection algorithm. Background noise is identified by analyzing the monitored data. A burst event can be accurately detected only when the impact of the burst can be differentiated from the background noise. We hypothesize that there is a minimum pipe diameter below which accurate burst detection is impossible. We found that data from at least two sensors close to the burst event are required to reduce detection errors.

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1765 ◽  
Author(s):  
Pingjie Huang ◽  
Naifu Zhu ◽  
Dibo Hou ◽  
Jinyu Chen ◽  
Yao Xiao ◽  
...  

This paper proposes a new method to detect bursts in District Metering Areas (DMAs) in water distribution systems. The methodology is divided into three steps. Firstly, Dynamic Time Warping was applied to study the similarity of daily water demand, extract different patterns of water demand, and remove abnormal patterns. In the second stage, according to different water demand patterns, a supervised learning algorithm was adopted for burst detection, which established a leakage identification model for each period of time, respectively, using a sliding time window. Finally, the detection process was performed by calculating the abnormal probability of flow during a certain period by the model and identifying whether a burst occurred according to the set threshold. The method was validated on a case study involving a DMA with engineered pipe-burst events. The results obtained demonstrate that the proposed method can effectively detect bursts, with a low false-alarm rate and high accuracy.


2018 ◽  
Vol 69 (2) ◽  
pp. 358-364
Author(s):  
Gheorghe I. Lazar ◽  
Albert Titus Constantin ◽  
Marie Alice Ghitescu ◽  
Serban Vlad Nicoara

The analysis following a numerical simulation aims to establish the water distribution system vulnerability to a contaminant release and so to estimate the optimum locations of several quality sensors to warn against the pollution effects. The TEVA-SPOT software toolkit (as specific EPANET extension) was engaged upon a study case regarding the water distribution network of Ortisoara Town in Timi� County (4385 inhabitants). Five sets of sensors were consecutively considered for the numerical modelling, the engaged sensors being set for three values of the detection limit and of the response time. Assumed as a possible scenario, the designed sensors had to monitor the impact of injecting (at different given moments and network nodes) two types of contaminants (chemical and biological).


Author(s):  
Luisa Lavalle ◽  
Tatiana Patriarca ◽  
Bernard Daulne ◽  
Olivier Hautier ◽  
Ester Ciancamerla

"This paper presents a water distribution network model to evaluate the impact of adverse events, such as faults and/or cyber-attacks, on a real water distribution system in a wider context which involves the interdependency with the electrical grid, in the frame of the Horizon 2020 project ATENA. The model has been developed by using a commercial simulator, which can address both the electrical and the water domain. Specific features and modules have been added to the simulator, in order to calculate the water level in tanks – an important and missing metric to support emergency plans. The interdependency among the electricity grid and the water network is considered throughout pumps, which are at the same time electrical loads and hydraulic devices. Two use cases, dealing with faults or cyber-attacks against the electrical grid affecting critical pumps or treatment stations, are investigated and the simulation results are reported."


2011 ◽  
Vol 11 (4) ◽  
pp. 497-503 ◽  
Author(s):  
Hou Yu-Kun ◽  
Zhao Chun-Hui ◽  
Huang Yu-Chung

Many water companies in China are developing GIS as a computer-based tool, for mapping and analyzing objects and events that happen on a water distribution network. However, only a few companies have taken a further step to develop a hydraulic model based on GIS, and Zhengzhou Water Supply Corporation is one of them. The WaterGEMS V8 XM from Bentley is used to develop the hydraulic model for the water distribution network in Zhengzhou city, which has a population of over 3 million. During establishment of the model, some of the data extracted from GIS are missing, abnormal, and redundant and require careful screening, searching, and judging. Model calibration is performed after a sensitivity analysis. Peaking factor and pipe roughness coefficient are key model parameters to calibrate. In calibrating peaking factors, the distribution system is divided into 5 operation districts with different types of water usage. To calibrate pipe roughness coefficients, the system was divided into 4 water supply districts with different attributes of pipelines. Finally, a case study of pipe layout evaluation it shows the hydraulic model to be a powerful tool for water supply management.


2014 ◽  
Vol 17 (2) ◽  
pp. 307-328 ◽  
Author(s):  
Donghwi Jung ◽  
Doosun Kang ◽  
Jian Liu ◽  
Kevin Lansey

A pipe burst is a major water distribution system failure. Water escapes the network through the break increasing the total flow entering the network. These higher flows, in turn, increase the head losses in pipes and result in lower water pressures at customer taps. This study focuses on burst detection by seeking to identify anomalies in net system demand, pipe flow rates, and nodal pressure heads. Three univariate statistical process control (SPC) methods (the Western Electric Company rules, the cumulative sum (CUSUM) method, and the exponentially weighted moving average [EWMA]) and three multivariate SPC methods (Hotelling T2 method and multivariate versions of CUSUM and EWMA) are compared with respect to their detection effectiveness and efficiency. First, the three univariate methods are tested using real system burst detection and then the six SPC methods are compared using synthetic data. The real application using net system demand shows that burst flows are proportionally too small to be detected. Synthetic data analyses suggest that the univariate EWMA method using nodal pressure provides the highest detectability. The method's long record length helps detect small bursts and avoid false detection. SPC methods require consistent system operations for measurements beyond total area flow.


2008 ◽  
Vol 8 (4) ◽  
pp. 421-426
Author(s):  
J. Menaia ◽  
M. Benoliel ◽  
A. Lopes ◽  
C. Neto ◽  
E. Ferreira ◽  
...  

Concerns arise from the possible occurrence of pathogens in drinking water pipe biofilms and storage tank sediments. In these studies, biofilm samples from pipes and sediments from storage tanks of the Lisbon drinking water distribution system were analyzed. Protein determinations and heterotrophic counts on pipe biofilm samples were used to assess the Lisbon network sessile colonization intensity and distribution. Indicator and pathogenic microorganisms were analyzed in pipe biofilm samples, as well as in storage tanks biofilm and sediments, by using cultural methods and PCR, to assess risks. Results have shown that the Lisbon network sessile colonization is relatively weak in intensity. In addition, no meaningful hazards were apparent for both the network biofilm and the storage tanks biofilm and sediments.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2141
Author(s):  
Stavroula Tsitsifli ◽  
Vasilis Kanakoudis

Disinfection is one of the most important water treatment processes as it inactivates pathogens providing safe drinking water to the consumers. A fresh-water distribution network is a complex system where constant monitoring of several parameters and related managerial decisions take place in order for the network to operate in the most efficient way. However, there are cases where some of the decisions made to improve the network’s performance level, such as reduction of water losses, may have negative impacts on other significant operational processes such as the disinfection. In particular, the division of a water distribution network into district metered areas (DMAs) and the application of various pressure management measures may impact the effectiveness of the water chlorination process. Two operational measures are assessed in this paper: (a) the use of inline chlorination boosters to achieve more efficient chlorination; and (b) how the DMAs formation impacts the chlorination process. To achieve this, the water distribution network of a Greek town is chosen as a case study where several scenarios are being thoroughly analyzed. The assessment process utilizes the network’s hydraulic simulation model, which is set up in Watergems V8i software, forming the baseline to develop the network’s water quality model. The results proved that inline chlorination boosters ensure a more efficient disinfection, especially at the most remote parts/nodes of the network, compared to conventional chlorination processes (e.g., at the water tanks), achieving 100% safe water volume and consuming almost 50% less chlorine mass. DMAs’ formation results in increased water age values up to 8.27%, especially at the remote parts/nodes of the network and require more time to achieve the necessary minimum effective chlorine concentration of 0.2 mg/L. However, DMAs formation and pressure management measures do not threaten the chlorination’s efficiency. It is important to include water age and residual chlorine as criteria when optimizing water pressure and the division of DMAs.


2010 ◽  
Vol 10 (2) ◽  
pp. 165-172 ◽  
Author(s):  
K. Diao ◽  
M. Barjenbruch ◽  
U. Bracklow

This paper aims to explore the impacts of peaking factors on a water distribution system designed for a small city in Germany through model-based analysis. As a case study, the water distribution network was modelled by EPANET and then two specific studies were carried out. The first study tested corresponding system-wide influences on water age and energy consumption if the peaking factors used at design stage are inconsistent with ones in real situation. The second study inspected the possible relationship between the choice of peaking factors and budgets by comparing several different pipe configurations of the distribution system, obtained according to variety of peaking factors. Given the analysis results, the first study reveals that average water age will increase if peaking factors estimated at design stage are larger than real values in that specific system, and vice versa. In contrast, energy consumption will increase if peaking factors defined for system design are smaller than ones in real case, and vice versa. According to the second study, it might be possible to amplify peaking factors for design dramatically by a slight increase in the investment on this system. However, further study on budget estimation with more factors and detailed information considered should be carried out.


Sign in / Sign up

Export Citation Format

Share Document