A Novel Sybil Attack Detection Mechanism for C-ITS

Author(s):  
Marwane Ayaida ◽  
Nadhir Messai ◽  
Geoffrey Wilhelm ◽  
Sameh Najeh
Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 198
Author(s):  
Junhyeok Yun ◽  
Mihui Kim

Mobile crowdsensing is a data collection system using widespread mobile devices with various sensors. The data processor cannot manage all mobile devices participating in mobile crowdsensing. A malicious user can conduct a Sybil attack (e.g., achieve a significant influence through extortion or the generation of fake IDs) to receive an incentive or destroy a system. A mobile crowdsensing system should, thus, be able to detect and block a Sybil attack. Existing Sybil attack detection mechanisms for wireless sensor networks cannot apply directly to mobile crowdsensing owing to the privacy issues of the participants and detection overhead. In this paper, we propose an effective privacy-preserving Sybil attack detection mechanism that distributes observer role to the users. To demonstrate the performance of our mechanism, we implement a Wi-Fi-connection-based Sybil attack detection model and show its feasibility by evaluating the detection performance.


Author(s):  
Fazlullah Khan ◽  
Ateeq ur Rehman ◽  
Abid Yahya ◽  
Mian Ahmad Jan ◽  
Josef Chuma ◽  
...  

The Internet of Things (IoT) is an emerging technology that aims to enable the interconnection of a large number of smart devices and heterogeneous networks. Ad hoc networks play an important role in the designing of IoT-enabled platforms due to their efficient, flexible, low-cost, and dynamic infrastructures. These networks utilize the available resources efficiently to maintain the Quality of Service (QoS) in a multi-hop communication. However, in a multi-hop communication, the relay nodes can be malicious, thus requiring a secured and reliable data transmission. In this paper, we propose a QoS-aware secured communication scheme for IoT-based networks (QoS-IoT). In QoS-IoT, a Sybil attack detection mechanism is used for the identification of Sybil nodes and their forged identities in multi-hop communication. %by high-power and mobile nodes. After Sybil nodes detection, an optimal contention window (CW) is selected for QoS provisioning, i.e., to achieve per-flow fairness and efficient utilization of the available bandwidth. In a multi-hop communication, the MAC layer protocols do not perform well in terms of fairness and throughput, especially when the nodes generate a large amount of data. It is because the MAC layer has no capability of providing QoS to prioritized or forwarding flows. We evaluate the performance of QoS-IoT in terms of Sybil attack detection, fairness, throughput, and buffer utilization. The simulation results show that the proposed scheme outperforms the existing schemes and significantly enhances the performance of the network with a large volume of data. Moreover, the proposed scheme is resilient against Sybil attack.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
M. Saud Khan ◽  
Noor M. Khan

Security is always a major concern in wireless sensor networks (WSNs). Identity based attacks such as spoofing and sybil not only compromise the network but also slow down its performance. This paper proposes a low complexity sybil attack detection scheme, that is, based on signed response (SRES) authentication mechanism developed for Global System for Mobile (GSM) communications. A probabilistic model is presented which analyzes the proposed authentication mechanism for its probability of sybil attack. The paper also presents a simulation based comparative analysis of the existing sybil attack schemes with respect to the proposed scheme. It is observed that the proposed sybil detection scheme exhibits lesser computational cost and power consumption as compared to the existing schemes for the same sybil detection performance.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4321 ◽  
Author(s):  
Fazlullah Khan ◽  
Ateeq ur Rehman ◽  
Abid Yahya ◽  
Mian Ahmad Jan ◽  
Joseph Chuma ◽  
...  

The Internet of Things (IoT) is an emerging technology that aims to enable the interconnection of a large number of smart devices and heterogeneous networks. Ad hoc networks play an important role in the designing of IoT-enabled platforms due to their efficient, flexible, low-cost and dynamic infrastructures. These networks utilize the available resources efficiently to maintain the Quality of Service (QoS) in a multi-hop communication. However, in a multi-hop communication, the relay nodes can be malicious, thus requiring a secured and reliable data transmission. In this paper, we propose a QoS-aware secured communication scheme for IoT-based networks (QoS-IoT). In QoS-IoT, a Sybil attack detection mechanism is used for the identification of Sybil nodes and their forged identities in multi-hop communication. After Sybil nodes detection, an optimal contention window (CW) is selected for QoS provisioning, that is, to achieve per-flow fairness and efficient utilization of the available bandwidth. In a multi-hop communication, the medium access control (MAC) layer protocols do not perform well in terms of fairness and throughput, especially when the nodes generate a large amount of data. It is because the MAC layer has no capability of providing QoS to prioritized or forwarding flows. We evaluate the performance of QoS-IoT in terms of Sybil attack detection, fairness, throughput and buffer utilization. The simulation results show that the proposed scheme outperforms the existing schemes and significantly enhances the performance of the network with a large volume of data. Moreover, the proposed scheme is resilient against Sybil attack.


2018 ◽  
Vol 15 (5) ◽  
pp. 1555-1561 ◽  
Author(s):  
A Bharathi ◽  
D. Yazhini Priyanka ◽  
P Padmapriya ◽  
K Priyadharsnee

2021 ◽  
Author(s):  
Sicheng Gong

This paper proposes a novel event-triggered attack detection mechanism for converter-based DC microgrid system. Under a distributive network framework, each node collects its neighbours' relative data to regulate its own output for local stabilization. Without power line current data, hardly can an agent directly identify the source of unexpected power flow, especially under an organized attack composed of voltage variations and corresponding deceptive messages. In order to recognize traitors who broadcast wrong data, target at system distortion and even splitting, an efficient attack detection and identification strategy is mandatory. After the attack detector is triggered, each relative agent refuses to trust any received data directly before authentication. Through proposed two-step verification by comparing theoretical estimated signals with received ones, both self sensors and neighbour nodes would be inspected, and the attacker was difficult to hide himself. Through simulation on SIMULINK/PLECS and hardware experiments on dSpace Platform, the effectiveness of proposed detection algorithm has been proved.


Sign in / Sign up

Export Citation Format

Share Document