scholarly journals Evaluating and Enhancing the Generalization Performance of Machine Learning Models for Physical Activity Intensity Prediction From Raw Acceleration Data

2020 ◽  
Vol 24 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Vahid Farrahi ◽  
Maisa Niemela ◽  
Petra Tjurin ◽  
Maarit Kangas ◽  
Raija Korpelainen ◽  
...  
2018 ◽  
Vol 124 (5) ◽  
pp. 1284-1293 ◽  
Author(s):  
Alexander H. K. Montoye ◽  
Bradford S. Westgate ◽  
Morgan R. Fonley ◽  
Karin A. Pfeiffer

Wrist-worn accelerometers are gaining popularity for measurement of physical activity. However, few methods for predicting physical activity intensity from wrist-worn accelerometer data have been tested on data not used to create the methods (out-of-sample data). This study utilized two previously collected data sets [Ball State University (BSU) and Michigan State University (MSU)] in which participants wore a GENEActiv accelerometer on the left wrist while performing sedentary, lifestyle, ambulatory, and exercise activities in simulated free-living settings. Activity intensity was determined via direct observation. Four machine learning models (plus 2 combination methods) and six feature sets were used to predict activity intensity (30-s intervals) with the accelerometer data. Leave-one-out cross-validation and out-of-sample testing were performed to evaluate accuracy in activity intensity prediction, and classification accuracies were used to determine differences among feature sets and machine learning models. In out-of-sample testing, the random forest model (77.3–78.5%) had higher accuracy than other machine learning models (70.9–76.4%) and accuracy similar to combination methods (77.0–77.9%). Feature sets utilizing frequency-domain features had improved accuracy over other feature sets in leave-one-out cross-validation (92.6–92.8% vs. 87.8–91.9% in MSU data set; 79.3–80.2% vs. 76.7–78.4% in BSU data set) but similar or worse accuracy in out-of-sample testing (74.0–77.4% vs. 74.1–79.1% in MSU data set; 76.1–77.0% vs. 75.5–77.3% in BSU data set). All machine learning models outperformed the euclidean norm minus one/GGIR method in out-of-sample testing (69.5–78.5% vs. 53.6–70.6%). From these results, we recommend out-of-sample testing to confirm generalizability of machine learning models. Additionally, random forest models and feature sets with only time-domain features provided the best accuracy for activity intensity prediction from a wrist-worn accelerometer. NEW & NOTEWORTHY This study includes in-sample and out-of-sample cross-validation of an alternate method for deriving meaningful physical activity outcomes from accelerometer data collected with a wrist-worn accelerometer. This method uses machine learning to directly predict activity intensity. By so doing, this study provides a classification model that may avoid high errors present with energy expenditure prediction while still allowing researchers to assess adherence to physical activity guidelines.


Author(s):  
Mamoun T. Mardini ◽  
Chen Bai ◽  
Amal A. Wanigatunga ◽  
Santiago Saldana ◽  
Ramon Casanova ◽  
...  

Wrist-worn fitness trackers and smartwatches are proliferating with an incessant attention towards health tracking. Given the growing popularity of wrist-worn devices across all age groups, a rigorous evaluation for recognizing hallmark measures of physical activities and estimating energy expenditure is needed to compare their accuracy across the lifespan. The goal of the study was to build machine learning models to recognize physical activity type (sedentary, locomotion, and lifestyle) and intensity (low, light, and moderate), identify individual physical activities, and estimate energy expenditure. The primary aim of this study was to build and compare models for different age groups: young [20-50 years], middle (50-70 years], and old (70-89 years]. Participants (n = 253, 62% women, aged 20-89 years old) performed a battery of 33 daily activities in a standardized laboratory setting while wearing a portable metabolic unit to measure energy expenditure that was used to gauge metabolic intensity. Tri-axial accelerometer collected data at 80-100 Hz from the right wrist that was processed for 49 features. Results from random forests algorithm were quite accurate in recognizing physical activity type, the F1-Score range across age groups was: sedentary [0.955 – 0.973], locomotion [0.942 – 0.964], and lifestyle [0.913 – 0.949]. Recognizing physical activity intensity resulted in lower performance, the F1-Score range across age groups was: sedentary [0.919 – 0.947], light [0.813 – 0.828], and moderate [0.846 – 0.875]. The root mean square error range was [0.835 – 1.009] for the estimation of energy expenditure. The F1-Score range for recognizing individual physical activities was [0.263 – 0.784]. Performances were relatively similar and the accelerometer data features were ranked similarly between age groups. In conclusion, data features derived from wrist worn accelerometers lead to high-moderate accuracy estimating physical activity type, intensity and energy expenditure and are robust to potential age-differences.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Alexander H.K. Montoye ◽  
Bradford S. Westgate ◽  
Kimberly A. Clevenger ◽  
Karin A. Pfeiffer ◽  
Joseph D. Vondrasek ◽  
...  

Space Weather ◽  
2020 ◽  
Vol 18 (7) ◽  
Author(s):  
Zhenbang Jiao ◽  
Hu Sun ◽  
Xiantong Wang ◽  
Ward Manchester ◽  
Tamas Gombosi ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3352
Author(s):  
Mamoun T. Mardini ◽  
Chen Bai ◽  
Amal A. Wanigatunga ◽  
Santiago Saldana ◽  
Ramon Casanova ◽  
...  

Accelerometer-based fitness trackers and smartwatches are proliferating with incessant attention towards health tracking. Despite their growing popularity, accurately measuring hallmark measures of physical activities has yet to be accomplished in adults of all ages. In this work, we evaluated the performance of four machine learning models: decision tree, random forest, extreme gradient boosting (XGBoost) and least absolute shrinkage and selection operator (LASSO), to estimate the hallmark measures of physical activities in young (20–50 years), middle-aged (50–70 years], and older adults (70–89 years]. Our models were built to recognize physical activity types, recognize physical activity intensities, estimate energy expenditure (EE) and recognize individual physical activities using wrist-worn tri-axial accelerometer data (33 activities per participant) from a large sample of participants (n = 253, 62% women, aged 20–89 years old). Results showed that the machine learning models were quite accurate at recognizing physical activity type and intensity and estimating energy expenditure. However, models performed less optimally when recognizing individual physical activities. F1-Scores derived from XGBoost’s models were high for sedentary (0.955–0.973), locomotion (0.942–0.964) and lifestyle (0.913–0.949) activity types with no apparent difference across age groups. Low (0.919–0.947), light (0.813–0.828) and moderate (0.846–0.875) physical activity intensities were also recognized accurately. The root mean square error range for EE was approximately 1 equivalent of resting EE [0.835–1.009 METs]. Generally, random forest and XGBoost models outperformed other models. In conclusion, machine learning models to label physical activity types, activity intensity and energy expenditure are accurate and there are minimal differences in their performance across young, middle-aged and older adults.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


Sign in / Sign up

Export Citation Format

Share Document