Design and Evaluation of Affective Virtual Reality System Based on Multimodal Physiological Signals and Self-Assessment Manikin

Author(s):  
Dan Liao ◽  
Lin Shu ◽  
Guodong Liang ◽  
Yingxuan Li ◽  
Yue Zhang ◽  
...  
2019 ◽  
Vol 63 (6) ◽  
pp. 60413-1-60413-11
Author(s):  
Yunfang Niu ◽  
Danli Wang ◽  
Ziwei Wang ◽  
Fan Sun ◽  
Kang Yue ◽  
...  

Abstract At present, the research on emotion in the virtual environment is limited to the subjective materials, and there are very few studies based on objective physiological signals. In this article, the authors conducted a user experiment to study the user emotion experience of virtual reality (VR) by comparing subjective feelings and physiological data in VR and two-dimensional display (2D) environments. First, they analyzed the data of self-report questionnaires, including Self-assessment Manikin (SAM), Positive And Negative Affect Schedule (PANAS) and Simulator Sickness Questionnaire (SSQ). The result indicated that VR causes a higher level of arousal than 2D, and easily evokes positive emotions. Both 2D and VR environments are prone to eye fatigue, but VR is more likely to cause symptoms of dizziness and vertigo. Second, they compared the differences of electrocardiogram (ECG), skin temperature (SKT) and electrodermal activity (EDA) signals in two circumstances. Through mathematical analysis, all three signals had significant differences. Participants in the VR environment had a higher degree of excitement, and the mood fluctuations are more frequent and more intense. In addition, the authors used different machine learning models for emotion detection, and compared the accuracies on VR and 2D datasets. The accuracies of all algorithms in the VR environment are higher than that of 2D, which corroborated that the volunteers in the VR environment have more obvious skin electrical signals, and had a stronger sense of immersion. This article effectively compensated for the inadequacies of existing work. The authors first used objective physiological signals for experience evaluation and used different types of subjective materials to make contrast. They hope their study can provide helpful guidance for the engineering reality of virtual reality.


2020 ◽  
Vol 2020 (13) ◽  
pp. 60413-1-60413-11
Author(s):  
Yunfang Niu ◽  
Danli Wang ◽  
Ziwei Wang ◽  
Fan Sun ◽  
Kang Yue ◽  
...  

At present, the research on emotion in the virtual environment is limited to the subjective materials, and there are very few studies based on objective physiological signals. In this article, the authors conducted a user experiment to study the user emotion experience of virtual reality (VR) by comparing subjective feelings and physiological data in VR and two-dimensional display (2D) environments. First, they analyzed the data of self-report questionnaires, including Self-assessment Manikin (SAM), Positive And Negative Affect Schedule (PANAS) and Simulator Sickness Questionnaire (SSQ). The result indicated that VR causes a higher level of arousal than 2D, and easily evokes positive emotions. Both 2D and VR environments are prone to eye fatigue, but VR is more likely to cause symptoms of dizziness and vertigo. Second, they compared the differences of electrocardiogram (ECG), skin temperature (SKT) and electrodermal activity (EDA) signals in two circumstances. Through mathematical analysis, all three signals had significant differences. Participants in the VR environment had a higher degree of excitement, and the mood fluctuations are more frequent and more intense. In addition, the authors used different machine learning models for emotion detection, and compared the accuracies on VR and 2D datasets. The accuracies of all algorithms in the VR environment are higher than that of 2D, which corroborated that the volunteers in the VR environment have more obvious skin electrical signals, and had a stronger sense of immersion. This article effectively compensated for the inadequacies of existing work. The authors first used objective physiological signals for experience evaluation and used different types of subjective materials to make contrast. They hope their study can provide helpful guidance for the engineering reality of virtual reality.


2015 ◽  
Vol 9 (6) ◽  
pp. 600
Author(s):  
Sergio Valdivia-Trujillo ◽  
Eliana Prada-Dominguez ◽  
Estefania Ramos-Montilla ◽  
Alvaro Joffre Uribe-Quevedo

Author(s):  
Taina Ribeiro de Oliveira ◽  
Tiago Fonseca Martinelli ◽  
Bianca Pina Bello ◽  
Juliana Davel Batista ◽  
Matheus Moura da Silva ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2033
Author(s):  
Sangguk Cha ◽  
Da-Yoon Nam ◽  
Jong-Ki Han

Virtual reality (VR) has been one of the most important topics in the field of multimedia signals and systems for approximately 10 years [...]


2015 ◽  
Vol 772 ◽  
pp. 585-590
Author(s):  
Florin Gîrbacia ◽  
Silviu Butnariu ◽  
Daniel Voinea ◽  
Bogdan Tzolea ◽  
Teodora Gîrbacia ◽  
...  

Surgical robots for biopsy procedure require pre-operative planning of trajectories prior to be used for needle guiding procedures. Virtual Reality (VR) technologies allow to simulate robotic biopsy procedure and to generate accurate needle trajectories that avoid vital organs. The paper presents a serial robot which can be used for biopsy procedure and a needle trajectory planning software based on VR technologies. A virtual environment has been modelled and simulations for robotic-assisted biopsy of the prostate have been performed.


Sign in / Sign up

Export Citation Format

Share Document