Development of a Lower Limb Tracking Flexion/Extension Virtual Reality System

2015 ◽  
Vol 9 (6) ◽  
pp. 600
Author(s):  
Sergio Valdivia-Trujillo ◽  
Eliana Prada-Dominguez ◽  
Estefania Ramos-Montilla ◽  
Alvaro Joffre Uribe-Quevedo
Author(s):  
Eddie E. Galarza ◽  
Marco Pilatasig ◽  
Eddie D. Galarza ◽  
Victoria M. López ◽  
Pablo A. Zambrano ◽  
...  

Author(s):  
Taina Ribeiro de Oliveira ◽  
Tiago Fonseca Martinelli ◽  
Bianca Pina Bello ◽  
Juliana Davel Batista ◽  
Matheus Moura da Silva ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3391
Author(s):  
Jan Marušič ◽  
Goran Marković ◽  
Nejc Šarabon

The purpose of this study was to evaluate intra- and inter-session reliability of the new, portable, and externally fixated dynamometer called MuscleBoard® for assessing the strength of hip and lower limb muscles. Hip abduction, adduction, flexion, extension, internal and external rotation, knee extension, ankle plantarflexion, and Nordic hamstring exercise strength were measured in three sessions (three sets of three repetitions for each test) on 24 healthy and recreationally active participants. Average and maximal value of normalized peak torque (Nm/kg) from three repetitions in each set and agonist:antagonist ratios (%) were statistically analyzed; the coefficient of variation and intra-class correlation coefficient (ICC2,k) were calculated to assess absolute and relative reliability, respectively. Overall, the results display high to excellent intra- and inter-session reliability with low to acceptable within-individual variation for average and maximal peak torques in all bilateral strength tests, while the reliability of unilateral strength tests was moderate to good. Our findings indicate that using the MuscleBoard® dynamometer can be a reliable device for assessing and monitoring bilateral and certain unilateral hip and lower limb muscle strength, while some unilateral strength tests require some refinement and more extensive familiarization.


2021 ◽  
Vol 11 (5) ◽  
pp. 2033
Author(s):  
Sangguk Cha ◽  
Da-Yoon Nam ◽  
Jong-Ki Han

Virtual reality (VR) has been one of the most important topics in the field of multimedia signals and systems for approximately 10 years [...]


2015 ◽  
Vol 772 ◽  
pp. 585-590
Author(s):  
Florin Gîrbacia ◽  
Silviu Butnariu ◽  
Daniel Voinea ◽  
Bogdan Tzolea ◽  
Teodora Gîrbacia ◽  
...  

Surgical robots for biopsy procedure require pre-operative planning of trajectories prior to be used for needle guiding procedures. Virtual Reality (VR) technologies allow to simulate robotic biopsy procedure and to generate accurate needle trajectories that avoid vital organs. The paper presents a serial robot which can be used for biopsy procedure and a needle trajectory planning software based on VR technologies. A virtual environment has been modelled and simulations for robotic-assisted biopsy of the prostate have been performed.


Sign in / Sign up

Export Citation Format

Share Document