Improving Transient Stability of Dual Stator-Winding Induction Generator Based-Wind farms By Slip Frequency Control

Author(s):  
Nazanin Abdolghani ◽  
Jafar Milimonfared ◽  
Mehrdad Abedi ◽  
M.H. Zamani

Low voltage ride through capability is an ability of the wind farm to stay connected with grid at the time of disturbance in the power system. The penetration of wind based renewable energy resources is increasing and the low voltage ride through consideration is vital for systems studies. The literature available demonstrates the improvement in low voltage ride through either by using fault current limiters or by implementing a control strategy for induction generator based wind farms. In this paper the low voltage ride through capability enhancement of the fixed speed induction generator is presented with various fault current limiters. The authors have presented the effects of fault current limiters in the aggregated hybrid wind farm consisting the combination of fixed speed induction generators and doubly fed induction generators which is not available in literature so far. A transient fault is simulated using PSCAD/EMTDC software in both the cases and the results are presented and discussed.


2015 ◽  
Vol 9 (2) ◽  
pp. 184-194 ◽  
Author(s):  
Md Ayaz Chowdhury ◽  
Weixiang Shen ◽  
Nasser Hosseinzadeh ◽  
Hemanshu Roy Pota

Author(s):  
Xu Pei-Zhen ◽  
Lu Yong-Geng ◽  
Cao Xi-Min

Background: Over the past few years, the subsynchronous oscillation (SSO) caused by the grid-connected wind farm had a bad influence on the stable operation of the system and has now become a bottleneck factor restricting the efficient utilization of wind power. How to mitigate and suppress the phenomenon of SSO of wind farms has become the focus of power system research. Methods: This paper first analyzes the SSO of different types of wind turbines, including squirrelcage induction generator based wind turbine (SCIG-WT), permanent magnet synchronous generator- based wind turbine (PMSG-WT), and doubly-fed induction generator based wind turbine (DFIG-WT). Then, the mechanisms of different types of SSO are proposed with the aim to better understand SSO in large-scale wind integrated power systems, and the main analytical methods suitable for studying the SSO of wind farms are summarized. Results: On the basis of results, using additional damping control suppression methods to solve SSO caused by the flexible power transmission devices and the wind turbine converter is recommended. Conclusion: The current development direction of the SSO of large-scale wind farm grid-connected systems is summarized and the current challenges and recommendations for future research and development are discussed.


Author(s):  
S Arockiaraj ◽  
BV Manikandan

In transmission line, the series compensation is used to improve stability and increases the power transmission capacity. It generates sub synchronous resonance (SSR) at turbine-generator shaft due to the interaction between the series compensation and wind turbine system. To solve this, several methods have been presented. However, these provide less performance during contingency period. Therefore, to mitigate the SSR and also to improve the dynamic performance of hybrid wind and PV system connected with series compensated wind farms, the adaptive technique of the Black Widow Optimization algorithm based Fuzzy Logic Controller (BWO-FLC) with UPFC is proposed in this paper. Here, the objective function is solved optimally using BWO technique. Based on this, the Fuzzy Logic Controller is designed. The results proved that the proposed controller performs the mitigation of SSR. The damping ratios of proposed controller to mitigation of SSR are 0.0098, 0.0139, and 0.0195 for wind speed of 6, 8 and 10 m/s respectively.


2021 ◽  
Vol 1781 (1) ◽  
pp. 012038
Author(s):  
M Topor ◽  
S I Deaconu ◽  
F Bu ◽  
G N Popa ◽  
L N Tutelea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document