Acoustooptic Generation and Characterization of the Higher Order Modes in a Four-Mode Fiber for Mode-Division Multiplexed Transmission

2014 ◽  
Vol 32 (23) ◽  
pp. 4534-4538 ◽  
Author(s):  
Du-Ri Song ◽  
Hee Su Park ◽  
Byoung Yoon Kim ◽  
Kwang Yong Song
2017 ◽  
Vol 42 (17) ◽  
pp. 3343 ◽  
Author(s):  
Yao Xu ◽  
Guobin Ren ◽  
Youchao Jiang ◽  
Yixiao Gao ◽  
Haisu Li ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Raúl V. Haro-Báez ◽  
Juan Córcoles ◽  
Jorge A. Ruiz-Cruz ◽  
José R. Montejo-Garai ◽  
Jesús M. Rebollar

The characterization of the dielectric properties of a material requires a measurement technique and its associated analysis method. In this work, the configuration involving two coaxial probes with a material for dielectric measurement between them is analyzed with a mode-matching approach. To that effect, two models with different complexity and particularities are proposed. It will be shown how convergence is sped up for accurate results by using a proper choice of higher-order modes along with a combination of perfect electric wall and perfect magnetic wall boundary conditions. It will also be shown how the frequency response is affected by the flange mounting size, which can be, rigorously and efficiently, taken into account with the same type of approach. This numerical study is validated through a wide range of simulations with reference values from another method, showing how the proposed approaches can be used for the broadband characterization of this well-known, but with a recent renewed interest from the research community, dielectric measurement setup.


2021 ◽  
Vol 92 (1) ◽  
pp. 014705
Author(s):  
Liu Yang ◽  
Xiaozhong He ◽  
Ruo Tang ◽  
Quanhong Long ◽  
Linwen Zhang

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alex. S. Jenkins ◽  
Lara San Emeterio Alvarez ◽  
Samh Memshawy ◽  
Paolo Bortolotti ◽  
Vincent Cros ◽  
...  

AbstractNiFe-based vortex spin-torque nano-oscillators (STNO) have been shown to be rich dynamic systems which can operate as efficient frequency generators and detectors, but with a limitation in frequency determined by the gyrotropic frequency, typically sub-GHz. In this report, we present a detailed analysis of the nature of the higher order spin wave modes which exist in the Super High Frequency range (3–30 GHz). This is achieved via micromagnetic simulations and electrical characterisation in magnetic tunnel junctions, both directly via the spin-diode effect and indirectly via the measurement of the coupling with the gyrotropic critical current. The excitation mechanism and spatial profile of the modes are shown to have a complex dependence on the vortex core position. Additionally, the inter-mode coupling between the fundamental gyrotropic mode and the higher order modes is shown to reduce or enhance the effective damping depending upon the sense of propagation of the confined spin wave.


Author(s):  
Celia K S Lau ◽  
Meghan Jelen ◽  
Michael D Gordon

Abstract Feeding is an essential part of animal life that is greatly impacted by the sense of taste. Although the characterization of taste-detection at the periphery has been extensive, higher order taste and feeding circuits are still being elucidated. Here, we use an automated closed-loop optogenetic activation screen to detect novel taste and feeding neurons in Drosophila melanogaster. Out of 122 Janelia FlyLight Project GAL4 lines preselected based on expression pattern, we identify six lines that acutely promote feeding and 35 lines that inhibit it. As proof of principle, we follow up on R70C07-GAL4, which labels neurons that strongly inhibit feeding. Using split-GAL4 lines to isolate subsets of the R70C07-GAL4 population, we find both appetitive and aversive neurons. Furthermore, we show that R70C07-GAL4 labels putative second-order taste interneurons that contact both sweet and bitter sensory neurons. These results serve as a resource for further functional dissection of fly feeding circuits.


Sign in / Sign up

Export Citation Format

Share Document