Deep In-Memory Architectures in SRAM: An Analog Approach to Approximate Computing

2020 ◽  
Vol 108 (12) ◽  
pp. 2251-2275
Author(s):  
Mingu Kang ◽  
Sujan K. Gonugondla ◽  
Naresh R. Shanbhag
2010 ◽  
Vol 3 (3) ◽  
pp. 218-231
Author(s):  
Ni Zhou ◽  
Fei Qiao ◽  
Huazhong Yang ◽  
Hui Wang

2020 ◽  
Vol 36 (1) ◽  
pp. 33-46
Author(s):  
B. Deveautour ◽  
A. Virazel ◽  
P. Girard ◽  
V. Gherman

2021 ◽  
Vol 26 (4) ◽  
pp. 1-31
Author(s):  
Pruthvy Yellu ◽  
Landon Buell ◽  
Miguel Mark ◽  
Michel A. Kinsy ◽  
Dongpeng Xu ◽  
...  

Approximate computing (AC) represents a paradigm shift from conventional precise processing to inexact computation but still satisfying the system requirement on accuracy. The rapid progress on the development of diverse AC techniques allows us to apply approximate computing to many computation-intensive applications. However, the utilization of AC techniques could bring in new unique security threats to computing systems. This work does a survey on existing circuit-, architecture-, and compiler-level approximate mechanisms/algorithms, with special emphasis on potential security vulnerabilities. Qualitative and quantitative analyses are performed to assess the impact of the new security threats on AC systems. Moreover, this work proposes four unique visionary attack models, which systematically cover the attacks that build covert channels, compensate approximation errors, terminate normal error resilience mechanisms, and propagate additional errors. To thwart those attacks, this work further offers the guideline of countermeasure designs. Several case studies are provided to illustrate the implementation of the suggested countermeasures.


1991 ◽  
Vol 2 (2) ◽  
pp. 45-49 ◽  
Author(s):  
Michele Di Santo ◽  
Giulio Iannello

Sign in / Sign up

Export Citation Format

Share Document