scholarly journals Machine Learning-Based Self-Compensating Approximate Computing

Author(s):  
Mahmoud Masadeh ◽  
Osman Hasan ◽  
Sofiene Tahar
2021 ◽  
Vol 17 (4) ◽  
pp. 1-19
Author(s):  
Mahmoud Masadeh ◽  
Yassmeen Elderhalli ◽  
Osman Hasan ◽  
Sofiene Tahar

Machine learning is widely used these days to extract meaningful information out of the Zettabytes of sensors data collected daily. All applications require analyzing and understanding the data to identify trends, e.g., surveillance, exhibit some error tolerance. Approximate computing has emerged as an energy-efficient design paradigm aiming to take advantage of the intrinsic error resilience in a wide set of error-tolerant applications. Thus, inexact results could reduce power consumption, delay, area, and execution time. To increase the energy-efficiency of machine learning on FPGA, we consider approximation at the hardware level, e.g., approximate multipliers. However, errors in approximate computing heavily depend on the application, the applied inputs, and user preferences. However, dynamic partial reconfiguration has been introduced, as a key differentiating capability in recent FPGAs, to significantly reduce design area, power consumption, and reconfiguration time by adaptively changing a selective part of the FPGA design without interrupting the remaining system. Thus, integrating “Dynamic Partial Reconfiguration” (DPR) with “Approximate Computing” (AC) will significantly ameliorate the efficiency of FPGA-based design approximation. In this article, we propose hardware-efficient quality-controlled approximate accelerators, which are suitable to be implemented in FPGA-based machine learning algorithms as well as any error-resilient applications. Experimental results using three case studies of image blending, audio blending, and image filtering applications demonstrate that the proposed adaptive approximate accelerator satisfies the required quality with an accuracy of 81.82%, 80.4%, and 89.4%, respectively. On average, the partial bitstream was found to be 28.6 smaller than the full bitstream .


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 205
Author(s):  
Hamoud Younes ◽  
Ali Ibrahim ◽  
Mostafa Rizk ◽  
Maurizio Valle

Approximate Computing Techniques (ACT) are promising solutions towards the achievement of reduced energy, time latency and hardware size for embedded implementations of machine learning algorithms. In this paper, we present the first FPGA implementation of an approximate tensorial Support Vector Machine (SVM) classifier with algorithmic level ACTs using High-Level Synthesis (HLS). A touch modality classification framework was adopted to validate the effectiveness of the proposed implementation. When compared to exact implementation presented in the state-of-the-art, the proposed implementation achieves a reduction in power consumption by up to 49% with a speedup of 3.2×. Moreover, the hardware resources are reduced by 40% while consuming 82% less energy in classifying an input touch with an accuracy loss less than 5%.


2015 ◽  
Vol 27 (3) ◽  
pp. 725-747 ◽  
Author(s):  
Juan Pablo Carbajal ◽  
Joni Dambre ◽  
Michiel Hermans ◽  
Benjamin Schrauwen

In the quest for alternatives to traditional complementary metal-oxide-semiconductor, it is being suggested that digital computing efficiency and power can be improved by matching the precision to the application. Many applications do not need the high precision that is being used today. In particular, large gains in area and power efficiency could be achieved by dedicated analog realizations of approximate computing engines. In this work we explore the use of memristor networks for analog approximate computation, based on a machine learning framework called reservoir computing. Most experimental investigations on the dynamics of memristors focus on their nonvolatile behavior. Hence, the volatility that is present in the developed technologies is usually unwanted and is not included in simulation models. In contrast, in reservoir computing, volatility is not only desirable but necessary. Therefore, in this work, we propose two different ways to incorporate it into memristor simulation models. The first is an extension of Strukov’s model, and the second is an equivalent Wiener model approximation. We analyze and compare the dynamical properties of these models and discuss their implications for the memory and the nonlinear processing capacity of memristor networks. Our results indicate that device variability, increasingly causing problems in traditional computer design, is an asset in the context of reservoir computing. We conclude that although both models could lead to useful memristor-based reservoir computing systems, their computational performance will differ. Therefore, experimental modeling research is required for the development of accurate volatile memristor models.


Sign in / Sign up

Export Citation Format

Share Document