KNN-ST: Exploiting Spatio-Temporal Correlation for Missing Data Inference in Environmental Crowd Sensing

2020 ◽  
pp. 1-1
Author(s):  
Ningrinla Marchang ◽  
Rakesh Tripathi
2021 ◽  
Vol 436 ◽  
pp. 273-282
Author(s):  
Youmin Yan ◽  
Xixian Guo ◽  
Jin Tang ◽  
Chenglong Li ◽  
Xin Wang

2021 ◽  
Vol 13 (12) ◽  
pp. 2333
Author(s):  
Lilu Zhu ◽  
Xiaolu Su ◽  
Yanfeng Hu ◽  
Xianqing Tai ◽  
Kun Fu

It is extremely important to extract valuable information and achieve efficient integration of remote sensing data. The multi-source and heterogeneous nature of remote sensing data leads to the increasing complexity of these relationships, and means that the processing mode based on data ontology cannot meet requirements any more. On the other hand, the multi-dimensional features of remote sensing data bring more difficulties in data query and analysis, especially for datasets with a lot of noise. Therefore, data quality has become the bottleneck of data value discovery, and a single batch query is not enough to support the optimal combination of global data resources. In this paper, we propose a spatio-temporal local association query algorithm for remote sensing data (STLAQ). Firstly, we design a spatio-temporal data model and a bottom-up spatio-temporal correlation network. Then, we use the method of partition-based clustering and the method of spectral clustering to measure the correlation between spatio-temporal correlation networks. Finally, we construct a spatio-temporal index to provide joint query capabilities. We carry out local association query efficiency experiments to verify the feasibility of STLAQ on multi-scale datasets. The results show that the STLAQ weakens the barriers between remote sensing data, and improves their application value effectively.


Author(s):  
Maria Lucia Parrella ◽  
Giuseppina Albano ◽  
Cira Perna ◽  
Michele La Rocca

AbstractMissing data reconstruction is a critical step in the analysis and mining of spatio-temporal data. However, few studies comprehensively consider missing data patterns, sample selection and spatio-temporal relationships. To take into account the uncertainty in the point forecast, some prediction intervals may be of interest. In particular, for (possibly long) missing sequences of consecutive time points, joint prediction regions are desirable. In this paper we propose a bootstrap resampling scheme to construct joint prediction regions that approximately contain missing paths of a time components in a spatio-temporal framework, with global probability $$1-\alpha $$ 1 - α . In many applications, considering the coverage of the whole missing sample-path might appear too restrictive. To perceive more informative inference, we also derive smaller joint prediction regions that only contain all elements of missing paths up to a small number k of them with probability $$1-\alpha $$ 1 - α . A simulation experiment is performed to validate the empirical performance of the proposed joint bootstrap prediction and to compare it with some alternative procedures based on a simple nominal coverage correction, loosely inspired by the Bonferroni approach, which are expected to work well standard scenarios.


2013 ◽  
Vol 846-847 ◽  
pp. 442-445
Author(s):  
Chun Lin He

The fault diagnosis technology have emerged and developed rapidly with the development of wireless sensor networks and requirements of applications improve. This paper describes two commonly used sensor network fault modeling. What is more, in order to solve this problem that sensor nodes are vulnerable and therefore produce wrong data, the paper proposes a distributed fault detecting algorithm based on spatio-temporal correlation among data of adjacent nodes. The simulation experiment shows that the algorithm can efficiently detect errors in the network and very few errors are introduced.


Sign in / Sign up

Export Citation Format

Share Document