DCFNet++: More Advanced Correlation Filters Network for Real-Time Object Tracking

2020 ◽  
pp. 1-1
Author(s):  
Lang Tian ◽  
Pingmu Huang ◽  
Zhipeng Lin ◽  
Tiejun Lv
Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2362 ◽  
Author(s):  
Yijin Yang ◽  
Yihong Zhang ◽  
Demin Li ◽  
Zhijie Wang

Correlation filter-based methods have recently performed remarkably well in terms of accuracy and speed in the visual object tracking research field. However, most existing correlation filter-based methods are not robust to significant appearance changes in the target, especially when the target undergoes deformation, illumination variation, and rotation. In this paper, a novel parallel correlation filters (PCF) framework is proposed for real-time visual object tracking. Firstly, the proposed method constructs two parallel correlation filters, one for tracking the appearance changes in the target, and the other for tracking the translation of the target. Secondly, through weighted merging the response maps of these two parallel correlation filters, the proposed method accurately locates the center position of the target. Finally, in the training stage, a new reasonable distribution of the correlation output is proposed to replace the original Gaussian distribution to train more accurate correlation filters, which can prevent the model from drifting to achieve excellent tracking performance. The extensive qualitative and quantitative experiments on the common object tracking benchmarks OTB-2013 and OTB-2015 have demonstrated that the proposed PCF tracker outperforms most of the state-of-the-art trackers and achieves a high real-time tracking performance.


2020 ◽  
Vol 10 (9) ◽  
pp. 3021
Author(s):  
Wangpeng He ◽  
Heyi Li ◽  
Wei Liu ◽  
Cheng Li ◽  
Baolong Guo

Object tracking is a challenging research task because of drastic appearance changes of the target and a lack of training samples. Most online learning trackers are hampered by complications, e.g., drifting problem under occlusion, being out of view, or fast motion. In this paper, a real-time object tracking algorithm termed “robust sum of template and pixel-wise learners” (rStaple) is proposed to address those problems. It combines multi-feature correlation filters with a color histogram. Firstly, we extract a combination of specific features from the searching area around the target and then merge feature channels to train a translation correlation filter online. Secondly, the target state is determined by a discriminating mechanism, wherein the model update procedure stops when the target is occluded or out of view, and re-activated when the target re-appears. In addition, by calculating the color histogram score in the searching area, a significant enhancement is adopted for the score map. The target position can be estimated by combining the enhanced color histogram score with the correlation filter response map. Finally, a scale filter is trained for multi-scale detection to obtain the final tracking result. Extensive experimental results on a large benchmark dataset demonstrates that the proposed rStaple is superior to several state-of-the-art algorithms in terms of accuracy and efficiency.


Author(s):  
Dimitrios Meimetis ◽  
Ioannis Daramouskas ◽  
Isidoros Perikos ◽  
Ioannis Hatzilygeroudis

Author(s):  
Xiuhua Hu ◽  
Yuan Chen ◽  
Yan Hui ◽  
Yingyu Liang ◽  
Guiping Li ◽  
...  

Aiming to tackle the problem of tracking drift easily caused by complex factors during the tracking process, this paper proposes an improved object tracking method under the framework of kernel correlation filter. To achieve discriminative information that is not sensitive to object appearance change, it combines dimensionality-reduced Histogram of Oriented Gradients features and Lab color features, which can be used to exploit the complementary characteristics robustly. Based on the idea of multi-resolution pyramid theory, a multi-scale model of the object is constructed, and the optimal scale for tracking the object is found according to the confidence maps’ response peaks of different sizes. For the case that tracking failure can easily occur when there exists inappropriate updating in the model, it detects occlusion based on whether the occlusion rate of the response peak corresponding to the best object state is less than a set threshold. At the same time, Kalman filter is used to record the motion feature information of the object before occlusion, and predict the state of the object disturbed by occlusion, which can achieve robust tracking of the object affected by occlusion influence. Experimental results show the effectiveness of the proposed method in handling various internal and external interferences under challenging environments.


Sign in / Sign up

Export Citation Format

Share Document